

MONTEREY, CALIFORNIA

THESIS
DYNAMIC CHANNEL ALLOCATION

by

Andrew D. Kaminsky

September 2003

Thesis Advisor: John Gibson
Second Reader: Geoffrey Xie

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Dynamic Channel Allocation

6. AUTHOR(S) Andrew D. Kaminsky

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Dynamic Channel Allocation (DCA) offers the possibility of capturing unused channel capacity by allocating unused
resources between competing network nodes. This can reduce or possibly eliminate channels sitting idle while information
awaits transmission. This holds potential for increasing throughput on bandwidth constrained networks.

The purpose of this thesis is to examine the techniques used to allocate channels on demand and access such methods
ability to maximize throughput. This thesis will also explore potential benefits to be gained by DCA through the use of
computer simulation.

15. NUMBER OF
PAGES

211

14. SUBJECT TERMS Dynamic Channel Allocation, Fixed Channel Allocation, Inverse
Multiplexing

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

DYNAMIC CHANNEL ALLOCATION

Andrew D. Kaminsky
Captain, United States Army

B.S., Grand Valley State University, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Andrew D. Kaminsky

Approved by: John Gibson

Thesis Advisor

Geoffrey Xie
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Dynamic Channel Allocation (DCA) offers the possibility of capturing unused

channel capacity by allocating unused resources between competing network nodes. This

can reduce or possibly eliminate channels sitting idle while information awaits

transmission. This holds potential for increasing throughput on bandwidth constrained

networks.

The purpose of this thesis is to examine the techniques used to allocate channels

on demand and access such methods ability to maximize throughput. This thesis will

also explore potential benefits to be gained by DCA through the use of computer

simulation.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

 TABLE OF CONTENTS

I. INTRODUCTION..1
 A. PREFACE...1
 B. PROBLEM STATEMENT ...1
 C MOTIVATION ..3

II. BACKGROUND ..5
 A. DEVELOPMENT ..5
 B. BANDWIDTH..5
 C. UTILIZATION ..6
 D. CHANNEL ALLOCATION ...7

1. Fixed Channel Allocation (FCA) ..7
2. Dynamic Channel Allocation (DCA)..8

a. Centralized Dynamic Channel Allocation9
b. Distributed Dynamic Channel Allocation..............................11

3. Comparison of FCA and DCA..11
4. Hybrid Channel Allocation ...12
5. Algorithms ..12

 E. TECHNIQUES...14
1. Inverse Multiplexing at the Hardware Layer14
2. Inverse Multiplexing at the Data Link Layer..................................16

a. IMA...16
b. Multilink PPP...17
c. Multirate Service ...17

3. Adaptive Inverse Multiplexing for Wide-Area Wireless
Networks ...18

4. Local Multipoint Distribution Services..18
5. Time Division Multiplexed on Demand ...19
6. Optically Interconnected Multiprocessors19
7. CSMA/CD-Based Multiple Network Lines20
8. Hybrid Channel Allocation in Wireless Networks..........................21
9. Beowulf Ethernet Channel Bonding...22

 F. SUMMARY ..23

III. DETERMINING A SOLUTION..25
 A. HOW DOES A STATION RECEIVE A CHANNEL25
 B. QUEUEING..25
 C. PROPAGATION DELAY...27
 D. SIMULATION DESIGN...27
 E. CLASS DESIGN ..28

1. Channel Allocation...30
2. Display Channel ...36
3. Display Delivery Time ...39

 vii

4. First Come First Serve...41
5. Fair Distribution ..47

IV. TESTING AND ANALYSIS OF RESULTS ...53
 A. TRAFFIC GENERATION ...53
 B FIRST COME FIRST SERVE ...55

1. Testing...55
2. Results ...56

 C. FAIR DISTRIBUTION ...65
1. Testing...65
2. Results ...66

 D. ANALYSIS ...78
 E. POSSIBLE IMPLEMENTATIONS...85

V. CONCLUSION ..87
 A. RECOMMENDATION...87
 B. FUTURE WORK...87

VI. APPENDICES..89
 A. PROGRAM - JAVA CLASS: CHANNEL ALLOCATION.....................89
 B. PROGRAM – JAVA CLASS: DISPLAY CHANNEL............................119
 C. PROGRAM – JAVA CLASS: DISPLAY DELIVERY TIME137
 D. PROGRAM – JAVA CLASS: FIRST COME FIRST SERVE162
 E. PROGRAM – JAVA CLASS: FAIR DISTRIBUTION176

LIST OF REFERENCES..191

INITIAL DISTRIBUTION LIST ...195

 viii

LIST OF FIGURES

Figure 1 Common channel utilization..2
Figure 2 Scenario for maximizing channel capacity..3
Figure 3 Time-slot assignment with reuse factor of 6 ...10
Figure 4 Generic diagram of using inverse multiplexers...14
Figure 5 Layer 1.5 of OSI model ...19
Figure 6 Multiple Network Layout ..20
Figure 7 Design of Program...28
Figure 8 Class Design ..29
Figure 9 First-Come-First-Serve Flow Chart...42
Figure 10 First-Come-First Serve Pseudo-Code..44
Figure 11 Fair Distribution Flow Chart ...48
Figure 12 Fair Distribution Pseudo-Code ..50
Figure 13 Example of Data Traffic Generation on a Fixed Channel54
Figure 14 Average Time Periods Taken for Delivery from Table 25 (light load)...................78
Figure 15 Decrease in Delivery Time from Table 25 (light load) ...79
Figure 16 Average Time Periods Taken for Delivery from Table 26 (moderate load)80
Figure 17 Decrease in Delivery Time from Table 26 (moderate load)....................................81
Figure 18 Average Time Periods Taken for Delivery from Table 27 (heavy load)82
Figure 19 Decrease in Delivery Time from Table 27 (heavy load)...83

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1 Variables in Channel Allocation class ..30
Table 2 Methods in Channel Allocation class ...36
Table 3 Methods in Display Channel class..39
Table 4 Methods in Display Delivery Time class..41
Table 5 Methods in First Come First Serve class ..47
Table 6 Methods in Fair Distribution class..52
Table 7 First Come First Serve Test Case A-H ...55
Table 8 Test A with no dynamic channels...57
Table 9 Test B with 1 dynamic channel (16% of the total channels) using First-Come-

First-Serve scheduling algorithm...58
Table 10 Test C with 2 dynamic channels (28% of the total channels) using First-Come-

First-Serve scheduling algorithm...59
Table 11 Test D with 3 dynamic channels (38% of the total channels) using First-Come-

First-Serve scheduling algorithm...60
Table 12 Test E with 4 dynamic channels (44% of the total channels) using First-Come-

First-Serve scheduling algorithm...61
Table 13 Test F with 5 dynamic channels (50% of the total channels) using First-Come-

First-Serve scheduling algorithm...62
Table 14 Test G with 10 dynamic channels (66% of the total channels) using First-Come-

First-Serve scheduling algorithm...63
Table 15 Test H with 15 dynamic channels (75% of the total channels) using First-Come-

First-Serve scheduling algorithm...64
Table 16 Fair Distribution Test Case A, J-N,P-Q..65
Table 17 Test A with no dynamic channels...67
Table 18 Test J with 1 dynamic channel (16% of the total channels) using Fair

Distribution scheduling algorithm ...68
Table 19 Test K with 2 dynamic channels (28% of the total channels) using Fair

Distribution scheduling algorithm ...69
Table 20 Test L with 3 dynamic channels (38% of the total channels) using Fair

Distribution scheduling algorithm ...70
Table 21 Test M with 4 dynamic channels (44% of the total channels) using Fair

Distribution scheduling algorithm ...71
Table 22 Test N with 5 dynamic channels (50% of the total channels) using Fair

Distribution scheduling algorithm ...72
Table 23 Test P with 10 dynamic channels (66% of the total channels) using Fair

Distribution scheduling algorithm ...73
Table 24 Test Q with 15 dynamic channels (75% of the total channels) using Fair

Distribution scheduling algorithm ...74
Table 25 Summary of 30 tests with a light traffic load..75
Table 26 Summary of 30 tests with a moderate traffic load ..76
Table 27 Summary of 30 tests with a heavy traffic load ...77

 xi

 THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF ABBREVIATIONS

ARPANET Advanced Research Projects Agency Network

ATM Asynchronous Transfer Mode

BONDING Bandwidth-On-Demand Interoperability Group

BRI Basic Rate Interface

CCITT Consultive Committee for International Telephone and
 Telegraph

CSMA/CD Carrier Sense Multiple Access/Collision Detected

DAMA Demand Assigned Multiple Access

DCA Dynamic Channel Allocation

ESRA Enhanced Staggered Resource Allocation

FCA Fixed Channel Allocation

FDD Frequency Division Duplexing

GUI Graphical User Interface

HCA Hybrid Channel Allocation

IEEE Institute of Electrical and Electronics Engineers

IMA Inverse Multiplexing over ATM

ISDN Integrated Services Digital Network

KBPS Kilobits per second

LMDS Local Multipoint Distribution Services

MAC Media Access Control

MBPS Megabits per second

MLP Multilink Point-to-Point Protocol

MP Maximum Packing

MSC Mobile Switch Center

OSI Open Systems Interconnection

PRI Primary Rate Interface

RFC Request For Comments

RMON Remote Monitoring

SAIN Synchronous Adaptive Infrastructure Network

 xiii

SNMP Simple Network Management Protocol

SRA Staggered Resource Allocation

TDD Time Division Duplexing

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

TSRP Time Slot Reuse Partitioning

WDM Wavelength Division Multiplexing

WWAN Wide-area Wireless Access Networks

 xiv

I. INTRODUCTION

A. PREFACE

Networking has been evolving over the past 30 years. One of the earlier protocols

was the Aloha, which was introduced in 1970. Three years later, the Ethernet

specification began and, although not the first effort in networking, it gained a dominant

role in network field, gaining momentum over the Token Ring specification. The Open

Systems Interconnection (OSI) Reference Model was defined in 1978 to provide a useful

framework for visualizing the communications process and comparing products in terms

of standards conformance and interoperability potential. This layered structure not only

aids users in visualizing the communications process, it also provides vendors with the

means for segmenting and allocating various communications requirements within a

workable format [Ref. 1].

The efforts have produced a plethora of proposed standards, some which attained

a dominant role in networking. However, it is usually the compromise of technology and

business practices that leads to the emergence of standards. As a result, current standards

are usually not the best means of accomplishing the task [Ref. 2]. An example of this is

the IEEE 802.3 based on the Ethernet specification.

Today, the push in utilizing the potential of the Internet is conveying all types of

traffic into a single networking fabric. Therefore, networks must increasingly deal with

flows of real-time streaming audio, video, and multi-media traffic that requires low

latency and an acceptable quality of service. Consequently, two primary considerations

of networks are providing low latency connectivity and a dynamic bandwidth allocation

to manage congestion where available bandwidth is limited [Ref. 3].

B. PROBLEM STATEMENT

The problem to be addressed by this thesis is whether or not holding some

network capacity in reserve, such that it can be dynamically assigned to users based on

offered load, can improve the delivery time of traffic in networks that experience

significant propagation delays. This problem is particularly of interest in unguided media

 1

such as wireless, underwater acoustics, satellite, and deep space communications where

transmission channels have extreme propagation delays or interference with which to

contend. Using several channels as a composite decreases the time needed for message

delivery by decreasing the transmission delay.

Figure 1 illustrates the current problem. John and Carl are assigned Channel 1

and 2, respectively. Each is sending data of different sizes. John’s data takes four time

periods to send and Carl’s data takes two time periods. While each person has his or her

own dedicated channel, Channel 3 remains unused. Although this method accomplishes

the task it is not the most efficient use of the bandwidth available, as some of the capacity

remains idle even though there is traffic to be sent.

4 MB
file

John

Carl

2 MB
file

 t0 t1 t2 t3

Channel 1

Channel 2

Channel 3

 Capacity of one channel for one time period is 1MB

Figure 1 Common channel utilization

Another approach to this problem is to allocate channels efficiently based on

demand. If the unused channel were dynamically allocated, then a more efficient

scenario would be for Carl to use this extra capacity to send his entire data in one time

period, t0. John would have to continue using his own dedicated channel until some

unused channels become available. In time period, t1, two channels are unused and John

can now send his remaining data. With this dynamic allocation of channels, better use of

bandwidth is achieved, as shown in Figure 2.

 2

4 MB
file

John

Carl

2 MB
file

 t0 t1 t2 t3

Channel 1

Channel 2

Channel 3

 Capacity of one channel for one time period is 1MB

Figure 2 Scenario for maximizing channel capacity

However, in the event all the channels are assigned, if the user for channel 3

wants to send some data, then whoever is dynamically borrowing channel 3 must

relinquish control of it and wait for it to become available again. Furthermore, if a

channel is used for a session it cannot be used concurrently for other communications, as

doing so would cause the data for each user of the shared channel to be corrupted.

C. MOTIVATION

The motivation for analyzing this problem is to increase the efficiency of the use

of channel capacity. Given a limited amount of bandwidth, the need to use this resource

in the most efficient means possible is important for maximizing the bandwidth

utilization and minimizing delivery time.

This thesis begins by examining channel allocation techniques currently used.

Following this, a solution is proposed that utilizes two types of algorithms to dynamically

allocate channels from which a computer simulation is devised. Upon gathering the

results, an analysis and recommendation are made and suggestions for future work in

channel allocation.

Chapter II discusses and compares fixed channel allocation with dynamic channel

allocation. In addition, some of the algorithms used to achieve channel allocation are

explored. This chapter also looks at techniques used, such as inverse multiplexing, time

division multiplexed on demand, hybrid channel allocation in wireless networks, and
 3

Beowulf Ethernet channel bonding. The background information presented in this

chapter gives an indication that channel allocation is still being examined and several

implementations are proposed.

Chapter III proposes a solution with two scheduling algorithms. One algorithm is

a First Come First Serve, which gives all free dynamic channels to the first requesting

fixed channel. The other algorithm is a Fair Distribution, which gives a portion of the

free dynamic channels to the requesting fixed channels. A computer program is devised

that simulates these algorithms, and the methods used in the program classes are

described in this chapter.

Chapter IV examines the results obtained from the computer simulation in

Chapter III. A comparison is made between the two algorithms as well the ratio of fixed

channels to dynamic channels. An analysis of the time taken between fixed and dynamic

channels is also discussed.

The conclusion is presented in Chapter V. A recommendation is discussed as

well as future work in dynamic channels. More research in areas of different algorithms,

as well as data loss, channels of varying size, and quality of service may provide and

improve performance with dynamic channel allocation.

 4

II. BACKGROUND

A. DEVELOPMENT

In the late 1960s and early 1970s, a number of ideas and policies were developed

for managing channels. K. Araki introduced the original Dynamic Channel Allocation

(DCA) policy with wireless communications, which assigns to a new user any channel

that is unused. D.C. Cox introduced the concepts of keeping channels in an order,

assigning channels based on information about channel usage, and channel reassignment.

J.S. Engel introduced the concept of initially assigning channels using Fixed Channel

Allocation (FCA), but then allows a base station to borrow a channel from a neighboring

cell if it has none available. Several other policies on managing channels have been

developed over the last two decades, some requiring little to no information at one end of

the admission control spectrum to the other end of spectrum in which complete

knowledge of a network is required. The low end of the admission control spectrum is

commonly referred with FCA, and moving towards the upper end places DCA with

variations at the extreme end with Maximum Packing (MP) as the most complex. MP

requires complete knowledge of all existing channel assignments in the entire system,

and may potentially reassign all existing channels [Ref. 4].

B. BANDWIDTH

Bandwidth is a finite resource. It is a determining factor for the capacity of a data

or voice channel. Ideally, if there were unlimited amounts of bandwidth available,

performance of data communications would vastly improve. However, as this is not the

case, maximizing the throughput over a finite amount of bandwidth is a problem of

significant focus today. A key network performance parameter of interest to the end user

is the delay experienced by traffic from its presentation by the source until its delivery at

the intended destination.

When the Internet was created more than 25 years ago, it was called the

ARPANET and was used almost exclusively by U.S. researchers and scholars for file

transfer and E-mail. The bandwidth used was from 9.6 Kbps to 56 Kbps, which was

 5

sufficient to support activities at that time. Today, individual and corporate users are

flooding onto the Internet via the World Wide Web in increasing numbers. These users

demand higher bandwidth-consuming technologies, such as multimedia applications

[Ref. 5].

C. UTILIZATION

Efficient schemes must be developed in utilizing idle channels. Channel

utilization may be considered as the total time spent sending original packets divided by

the total time required to deliver the data. The higher the throughput for a given

bandwidth, the higher the utilization achieved. Channel utilization is sometimes called

network utilization. The network utilization can be monitored and measured by special

equipment, such as protocol analyzers or remote monitoring (RMON) devices. In

addition, certain hubs and switches provide network utilization statistics on their visual

displays [Ref. 6].

Several communication protocols have been developed over the years, some

emerging as adopted standards for communications. One of the earliest schemes

developed was the Aloha protocol. The basic idea of the classic Aloha protocol is to

transmit when desired, receive a positive acknowledgement from the receiver, and back

off and retransmit if no acknowledgement is received (timeout). The channel utilization

reaches its maximum value at .184, when the offered load reaches one frame per two

frames periods for the network. A variation of the classic Aloha protocol is called Slotted

Aloha. Slotted Aloha reduces the chance of collision and improves utilization up to a

maximum value of .362. However, the mean delay is increased as a tradeoff [Ref. 7].

Another protocol is Demand Assigned Multiple Access (DAMA) in which the

sender requests a reservation for a future time slot. When the time slot comes, the user

transmits without contention. The tradeoff in this protocol is also higher latency. This

technique is commonly used in satellite systems where there are more users than

available channels [Ref. 7].

Carrier Sense Multiple Access/Collision Detection is a popular protocol in local

area networking. This protocol requires the sender to listen to the carrier before

 6

transmitting. When the channel is idle, the sender begins transmitting. If the sender

detects a collision, the sender stops transmitting, waits a random period of time, and

begins retransmitting. The collisions consume a very small percentage of available

channel capacity, even under a moderate to heavy traffic load. Another way of looking at

this is that collisions quickly redistribute the traffic load over the available time,

maximizing channel utilization and application throughput [Ref. 6]. While this protocol

works well in wired networks, there is a problem in wireless networks where the

transmitter may not be able to detect a collision, depending upon the station’s area of

coverage.

Inhibit Sense/Multiple Access incorporates a base station that transmits a busy

tone. With an absent busy tone, a user may transmit, however if a collision is detected

the user backs off and retransmits. This is also known as Digital Sense Multiple Access

[Ref. 7].

D. CHANNEL ALLOCATION

There are two major methods used to allocate channels: Fixed Channel

Allocation (FCA) and Dynamic Channel Allocation (DCA). The two may be combined

to yield a hybrid scheme. The purpose of these methods is to assign channels in such a

way as to maximize capacity utilization, while at the same time maintaining

communications quality. In most publications, channel allocation is applied to voice

based systems where the aim is to minimize the call blocking and call-dropping rates. In

contrast, the aim of channel allocation in a data oriented service is to improve the overall

data throughput [Ref. 8].

1. Fixed Channel Allocation (FCA)

Fixed Channel Allocation’s major advantage is simplicity. As its name implies,

channels are fixed and dedicated to the specific user. This FCA policy clearly is

sufficient to insure that no collisions occur on a given channel due to multiple users

accessing it [Ref. 9]. One of its drawbacks, however, is that it is not adaptive to high

traffic burstiness and thus has low efficiency when presented traffic loads, which do not

present data according to constant bit, rate scales. Further, inefficiencies exist when

 7

channel capacity is monolithic, while user’s profiles vary with respect to presented loads.

The lowered efficiency is exacerbated when the variance between user traffic loads is

significant.

To overcome this low efficiency within the cellular telephony arena, there are two

main schemes that can be applied to FCA: non-uniform channel allocation and channel

borrowing. Non-uniform channel allocation takes into account the traffic distribution of

cells. Cells with higher estimated traffic are assigned more channels, and each channel is

dedicated to a source-destination pair. In the channel-borrowing scheme, when a cell has

used up all its pre-assigned channels, it can satisfy additional demands by borrowing

channels from a neighboring cell that has free channels. This enables the system to adapt

to traffic demands. However, the stipulation in this is a channel can only be borrowed if

the borrowed channel does not interfere with existing calls, including those in

neighboring cells. Other neighboring cells are prohibited from using a channel that is

borrowed, and therefore, the channel is known as a locked channel [Ref. 10].

Furthermore, the borrowed channels allow more users to be serviced by the cell, but does

not necessarily address variance in individual user traffic presentations.

2. Dynamic Channel Allocation (DCA)

Dynamic Channel Allocation may help to overcome FCA’s limited

responsiveness or adaptability. In DCA, no channel is permanently assigned, as they are

in FCA. The idea is based upon the establishment of a centrally managed channel pool

for all users in a system. Channels are assigned as needed and returned back to the

channel pool once they are no longer needed. The most common use of this is in cellular

telephony, where a switch center allocates channels based on real-time channel requests

from each cell.

In order to allocate a channel, information, either in the form of current

measurements or from prior estimates, concerning the interference (congestion) or traffic

data patterns is required. The more timely the information gathered, the better the

channel allocation decision is likely to be [Ref. 8].

 8

Two principal methods are used in DCA, centralized and distributed. The

primary discriminator as to which method is employed is the type of information being

supported, binary data or voice. Voice has traditionally utilized circuit switching, thus

ensuring uniform delay throughout the session, whereas data utilizes packet switching

where data, delays and packet loss rates may vary within a given communication session.

However, even though voice requires a constant bit rate channel, it can be switched off

during short pauses in speech, thereby creating bursts of approximately 10 to 20 ms of

speech [Ref. 10].

a. Centralized Dynamic Channel Allocation
Centralized DCA utilizes a controller that assigns channels based upon

specific costs. The cost function is different in different schemes. The centralized DCA

schemes outlined by Katzela and Naghshineh assigns channels based on constraints such

as reuse distance, future blocking probability, and the number of time of a channel is

used. It can produce a near-optimum channel allocation. However, there is a potentially

high cost associated with the overhead to accomplish this [Ref. 10].

 One implementation of centralized assignment uses time slot reuse

partitioning (TSRP). A time frame is divided into two portions, dedicated and shared. If

a user requires a higher QoS, then that user would be given more timeslots in the shared

portion of the frame. In a method called Staggered Resource Allocation (SRA), each cell

is divided into six sections, although other divisors might be used. Timeslots are grouped

into six sub-frames and sectors are labeled 1 to 6 counter-clockwise as shown in Figure 3.

 9

6

1

2

3

5

42

3

4

5

1

6

2

3

4

5

1

64

5

6

1

3

26

1

2

3

5

4

6

1

2

3

5

42

3

4

5

1

6

cell

section

1 2 3 4 5 6

1

1 2

subframe

timeslot frame

Figure 3 Time-slot assignment with reuse factor of 6

 10

 The sector labeling patterns for adjacent cells differ by a 120º rotation,

thus creating a cluster of three cells whose patterns can be repeated across the entire

system. Users in each sector can only transmit in the sub-frames dedicated to that sector.

If they have additional data to send, it would be sent in another sub-frame in an order

unique to each sector. The sub-frame is assigned to its sector in such a way as to

minimize the interference between users. Each sector assigns time slots for transmitting

packets to or from its terminals according to a special order. In a further refinement to

this method, called Enhanced Staggered Resource Allocation (ESRA), the time sub-

frames are further divided into mini-frames reducing concurrent transmission [Ref. 11].

b. Distributed Dynamic Channel Allocation
 The distributed DCA scans for local information, such as signal strength,

upon which to base channel allocations. Synchronization is critical to this technique.

Ideally, scanning would occur before a transmission begins. However, with inference or

bad feedback, efficiency of channel allocation would degrade. In addition, deadlocks and

instability are more likely to occur in this method [Ref. 10].

3. Comparison of FCA and DCA

FCA is simpler than DCA to configure and implement. FCA also insures that no

user can borrow or utilize a channel dedicated to another user, thus preventing that user

from using its channel, which may happen under DCA.

DCA performs better than FCA under light or moderate loads, but FCA becomes

superior under higher traffic loads. With heavy traffic load, FCA performs better when

the maximum load is present in each cell, whereas, DCA usually does not conform to

these constraints and so performs worse [Ref. 10]. Further, DCA methods require more

overhead than FCA [Ref. 12]. Note that as the traffic load increases the traffic

approaches more constant bit rate-like pattern.

The centralized DCA relies on a controller to manage the pool of channels, which

can bring a network down if the controller fails. The distributed DCA relies on feedback,

which can be distorted or delayed. Thus, the use of dynamic allocation does not come

 11

without cost. It must be determined whether or not the cost exceeds the value of the

benefit to be gained before implementing a dynamic allocation scheme.

4. Hybrid Channel Allocation

The Hybrid Channel Allocation (HCA) method makes use of the DCA method

under light and medium traffic loads, and the FCA method under heavy traffic loading.

Putting aside some channels for DCA and some for FCA can support this technique. The

ratio of fixed-to-dynamic channels drives the performance of the system [Ref. 10].

5. Algorithms

The channel allocation problem is classified as an NP-complete (nondeterministic

polynomial time) problem, which means as the size of the problem increases, the time

required to solve the problem does not increase in a polynomial manner – but in an

exponential manner. In fact, it is highly unlikely a polynomial time algorithm will be

developed to exactly solve any NP-complete problem. However, if one or more input

parameters can be adjusted, an acceptable or heuristic solution may be found. Such

heuristic methods can solve a reasonable fraction of the common cases, where an

approximation to the solution may be sufficient [Ref. 13].

In cellular systems, FCA is widely used because of its simplicity. However, it is

not adaptive to time-dependent traffic. With DCA there is a centrally managed pool for

all cells in a system and a Mobile Switch Center (MSC) that allocates channels based on

real-time channel requests from each cell. The majority of algorithms in this area are for

DCA, and they vary widely in their complexity. The simplest algorithms do not use any

rearrangement when channels are allocated. They usually perform poorly in heavy

traffic, even worse than FCA. The most complex algorithm of DCA uses “maximum

packing” to allow every possible channel rearrangement to make room for new calls. As

a result, channel capacity usage is at maximum. However, such algorithms are too

complicated to implement [Ref. 14].

In a cellular phone example, a DCA algorithm is invoked and a series of channel

readjustment are triggered for every event such as call origination, call ending, and

handoff. To implement the readjustment, a lot of mobile subscribers and base stations are

 12

involved in the channel handoff. These handoff activities not only degrade call quality,

but also increase the loads to the mobile switch center and message networks. Due to

these complexities, there is rarely a feasible DCA algorithm implemented in the real

world. To allocate channels, DCA usually relies on the static and the partial interference

information that was acquired before the system started. Therefore, the channel

allocation in DCA is rarely optimized [Ref. 14].

The Genetic Algorithm is a heuristic-based algorithm. This algorithm is modeled

after the natural process of evolution in which fitter individuals have a higher chance of

reproducing and passing strong traits [Ref. 15]. It is able to find a good sub-optimal

solution and is often referenced as a benchmark along with FCA for the other specific

algorithms.

Another heuristic-based algorithm is the Tabu Search, which is a commonly used

heuristic for solving combinatorial optimization problems. Its basic idea is to prevent

cycling by forbidding or penalizing moves to previously visited points in the search

space. In addition, unlike other search algorithms, where “best” generally means the best

cost seen so far, Tabu Search selects “best” depending not only on cost evaluations but

also on other conditions, such as the search history. The systematic use of memory is the

major feature of Tabu Search. However, Tabu Search’s performance is satisfactory and

not optimal [Ref. 15].

Some common algorithms for DCA are Random Assignment (RA) and Least

Interference Algorithm (LIA). The RA is similar to the FCA Genetic Algorithm in that it

does not require centralized knowledge of the network in order to allocate a channel, and

as the name implies, a channel is randomly selected. RA is simple and effective for a

system with a high number of available channels. The LIA, commonly employed in

support of broadband fixed wireless access (BFWA), uses access points to measure the

interference power of all available channels and selects the channel with the lowest

interfered power [Ref. 8].

 13

E. TECHNIQUES

An approach by Integrated Services Digital Network (ISDN) addresses the

problem of bottlenecks or under utilized lines in the telephone network. Equipment that

was non-ISDN and that did not operate at speeds of 56 or 64 Kbps under utilized the

channel capacity. ISDN uses a technique called inverse multiplexing, otherwise known

as bandwidth on demand [Ref. 16].

Inverse multiplexing speeds up data transmission by dividing a data stream into

multiple concurrent streams that are transmitted at the same time across separate channels

and are then reconstructed back into the original data stream at the other end as shown in

Figure 4 [Ref. 17].

Ethernet Ethernet
Multiplexer MultiplexerRouter Router

ISDN

Figure 4 Generic diagram of using inverse multiplexers

1. Inverse Multiplexing at the Hardware Layer

ISDN is a set of digital transmission protocols defined by the Consultive

Committee for International Telephone and Telegraph (CCITT has been renamed the

Telecommunications Standards Sector of the International Telecommunications Union).

It is the telephone network, turned digital from end-to-end, which transmits data and

processes calls at significantly faster speeds and with greater clarity. ISDN utilizes the

current twisted pair in many places today. However, specially designed equipment is

necessary for the inverse multiplexing, currently available from vendors.

ISDN provides a raw data rate of 144 Kbps on a single pair twisted wire. Later it

was discovered 160 Kbps could be squeezed out of the thin copper wire. This data rate is

divided into two 56 Kbps or 64 Kbps channels (depending on the phone company),

commonly called B, for bearer, channels, and a third channel of 16 Kbps, commonly

called D, for delta, channel. The B channels carry voice or data and the D channel

provides signaling and control. ISDN allows for dynamic bandwidth allocation to

 14

increase effective throughput, which is the logical aggregation of both B channels. This

type of interface is commonly called Basic Rate Interface (BRI) or Basic Rate Service

(BRS).

The next higher capacity is Primary Rate Interface (PRI). In North America and

Japan it is an aggregation of 23 B channels and 1 D channel (64 Kbps) yielding a total

capacity of 1.544 Mbps, commonly called a T1 [Ref. 18].

The channel aggregation is also known as Bandwidth-On-Demand

Interoperability Group (BONDING) or inverse multiplexing. It is the process of

implementing a high speed channel by splitting it into several network channels at lower

speeds and aggregating the network channels at the remote end. In 1991, a standard was

defined for frame structure and procedures in establishing a wideband communications

connection by combining multiple switched 56 and 64 Kbps channels through the use of

an inverse multiplexer [Ref. 19]. In addition, the BONDING specifications implements

four modes of operations for the inverse multiplexer:

• Mode 0 allows inverse multiplexers to receive two 56 Kbps calls from a video

codec and initiate dual 56 Kbps calls to support a video conference.

• Mode 1 allows inverse multiplexers to spread a high speed data stream over

multiple switched 56/64 Kbps circuits, but it does not provide error checking.

• Mode 2 adds error checking to each 56/64 Kbps circuit by withholding 1.6

percent of the bandwidth from each circuit for the passage of information that

detects circuit failures and reestablishes links.

• Mode 3 uses out-of-band signaling for error checking, which may be derived from

a separate dial-up circuit or the unused bandwidth of an existing circuit [Ref. 20].

An inverse multiplexer incorporates an administrative function, named a call

profile. A call profile is a configurable file that contains the parameters of a particular

data call so that a similar call can be established quickly. Also, remote administration

can be performed on the inverse multiplexer, but at a small cost of the network's

bandwidth. Most remote procedures can be performed using SNMP [Ref. 20].

 15

There are many practical uses today for inverse multiplexing. For example, video

conferencing and detailed imaging are becoming popular in which large amounts of data

are needed. Another is dialed-up backup, where multiple lines are needed for large

bandwidth in the event of a system crash [Ref. 21].

Some limitations do exist with inverse multiplexing. Channel characteristics may

hinder performance of the overall transmission of a data group. Delays of an individual

channel may cause delays in the demultiplexing and packet assembly. Also, inefficient

scheduling algorithms may be constrained by the slowest link. Furthermore, loss of a

channel may require retransmission of the entire data.

2. Inverse Multiplexing at the Data Link Layer

Inverse multiplexing originally began at the hardware layer, Layer 1 of the OSI

model. This technique requires specific hardware technology be implemented. By

implementing inverse multiplexing at the data link layer, Layer 2, software is used

thereby making the development much easier. As a result, inverse multiplexing can be

used over Asynchronous Transfer Mode (IMA), multilink PPP (MLP), or multilink frame

relay (MFR). All three have some unique advantages, but each also carries some

overhead [Ref. 22].

a. IMA
 IMA specifies a transmission method in which ATM cells are fanned

across several T1/E1 lines, and then reassembled at the receiving end without loss of the

original ATM cell order. By enabling consolidated transport of the ATM protocol over

T1 and E1 lines, IMA extends ATM to all portions of the WAN, not just to locations

where traffic is very high or high capacity links are available.

 Since the IMA access device at the receiving end requires a steady stream

of cells to correctly recreate the original stream, the sending device introduces filler cells

to keep the round-robin process at both ends in sync whenever there is a lull in traffic.

To reduce bandwidth consumption, IMA removes idle and unassigned cells from the

original stream and reinserts them at the receiving end.

 16

 Since IMA devices must operate across multiple networks, they must also

operate under multiple network clocks, where non-synchronous circuits are routed

through different paths and more than one timing domain. Each IMA receiving device

must be able to implement controlled frame slippage to compensate for the timing

differences between circuits and master clocks. They must also work in a hybrid network

[Ref. 23].

 Performance is one of the strongest points for IMA. Since it’s based on

ATM, all packets are 53 bytes long, so there’s very low latency. In fact, IMA has all of

the performance advantages of combining frame relay with fragmentation. However,

IMA has the liability of ATM’s relatively high overhead. This becomes significant when

you have a high percentage of short packets that don’t happen to fit nicely into ATM cell

payloads [Ref. 22].

b. Multilink PPP
 Multilink PPP (MLP) is simple and widely available, but the

implementations are limited to IP traffic. Also, MLP tends to be implemented much

more widely for lower-speed dial-up services than for higher-speed, dedicated access

services. RFC 1717, written in 1994, defines MLP, addressing the aggregation of

64Kbps ISDN B channels into a logical, higher-bandwidth circuit. It was made obsolete

by RFC 1990, which incorporated inverse multiplexing standards in 1996 [Ref. 24].

 RFC 1618 recommends that the MLP be used instead of BONDING. This

is because BONDING has an initialization period of its own, which might conflict with

the simple detection technique of a configuration request being tried twice. In addition,

BONDING requires extensive individual configuration in some current implementations

when multiple B channels are used [Ref. 25].

c. Multirate Service
 Multirate Service, sometimes called Nx64 service, is available from some

telephone companies. With this service, a user receives a single channel, of whatever

size, in multiples of 64 Kbps, on a per-call basis. This has the advantage that only one

single call is made, resulting in a faster connection setup [Ref. 26]. However, this

technique is both more expensive and less efficient than some of the others.

 17

3. Adaptive Inverse Multiplexing for Wide-Area Wireless Networks

In wide-area wireless access networks (WWAN) inverse multiplexing is the

standard method for providing higher end-to-end bandwidth. However, most WWAN

use shared channels with highly variable link characteristics, including bandwidth,

latency, and loss rates. An approach by Alex Snoeren, from the Massachusetts Institute

of Technology, is to use a performance metric to adjust traffic scheduling, which he terms

link quality balancing.

Snoeren’s scheduling technique, similar to weighted round robin, is based on the

ratio of the short-term average of observed throughput for each of the channels. Link

quality balancing dynamically adjusts the MTU of each link in proportion to the available

bandwidth. Splitting packets into fragments that can be transmitted and reassembled in

roughly the same amount of time prevents slow channels from throttling the performance

of the entire data stream [Ref. 27].

4. Local Multipoint Distribution Services

Local Multipoint Distribution Services (LMDS) is a relatively new type of

terrestrial wireless service providing an attractive solution to the “last mile” problem of

connecting consumers to broadband communications. In Leonidas Fountanas’ thesis, An

Assessment of Emerging Wireless Broadband Technologies, he describes LMDS as a full

duplex system of the up and down streams of transmission and reception. Two common

methods that he describes for this are Time Division Duplexing (TDD) and Frequency

Division Duplexing (FDD). The TDD systems operate in a similar fashion to TDMA

systems. The uplink and downlink use all the available bandwidth during transmission

but only in specified time periods. Asymmetrical time slot allocation is possible for

better utilization of the bandwidth, as uplinks typically require lower data rates. FDD

systems provide two-way communication by separating the bandwidth into two smaller

channels, one for reception and another for transmission. As in the TDD method,

efficient use of the spectrum is feasible with asymmetrical bandwidth allocation for the

two different channels. However, two separate antennas are generally required in FDD

[Ref. 28].

 18

5. Time Division Multiplexed on Demand

Time Division Multiplexed (TDM) Bandwidth on Demand is a technique

developed to address broadband wireless access systems. It is a protocol that lies on top

of the physical layer but below all higher level protocols, as shown in Figure 5.

Data link/Network Layers

MAC layer

Bandwidth-On-Demand MAC sublayer

Physical Layer

Data link/Network Layers

MAC layer

Physical Layer

Figure 5 Layer 1.5 of OSI model

This approach assures non-obsolescence since it is completely independent from

higher layer communications protocols. As a result, some refer to it as Layer 1.5 of the

OSI model [Ref. 3]

Advantages of this approach include enhanced bandwidth utilization efficiency,

low latency, and low delay variation. Broadband Wireless Access networks are a good

application for this technique, as well as, Edge and Tandem node switches utilizing point

to multipoint structures [Ref. 3].

The Synchronous Adaptive Infrastructure Network’s (SAIN) approach uses the

1.5 Bandwidth-On-Demand sub-layer. It assigns an integer for cellets (TDM frames of

small fixed length time slots) per frame for a single connection. As the value of the

integer changes, the connection’s bandwidth changes dynamically. SAIN proponents

state the bandwidth management operation is very simple because it only needs a few

bytes for most tasks [Ref. 29].

6. Optically Interconnected Multiprocessors

Optically interconnected networks, using wavelength division multiplexing

(WDM), have potential connectability and reconfigurability capabilities that exceed

electronic based networks. A study conducted by Joon-Ho Ha and Timothy Mark

 19

Pinkston, from the University of Southern California, examined a token-based channel

access protocol for WDM optically interconnected multiprocessors. Their study looked

at the way TDMA passes control of channels between nodes with regard solely to time

and not to communication needs. The token, as a supplemental control mechanism,

passes control of channel access in conjunction with the slotted channel access of TDMA.

This is referred to as token-based TDMA (T-TDMA). T-TDMA can accomplish higher

channel utilization and lower latency, as the token enables the progressive recovery of

unused slot spaces based on an individual node’s communication needs. The use of a

token in conjunction with TDMA has the potential to reduce packet latency by

minimizing bandwidth waste due to unused slot spaces. A token is used to achieve

dynamic allocation and recovery of unused slot space by allowing nodes without traffic

to communicate to pass channel access onto other nodes needing to communicate. This

technique makes it viable in the optical arena [Ref. 30].

7. CSMA/CD-Based Multiple Network Lines

Another approach in Ethernet networks is utilizing an alternative network

topology devised by Gregory Cu and Nelson Marcos. This technique provides multiple

network paths to all the stations connected to the network as shown in Figure 6.

Workstation Workstation Workstation

Line 1

Line 2

Line k

Figure 6 Multiple Network Layout

 It is very much like a mesh network, however, in the physical layout, the

workstations have several network devices, each attached to a single bus in a parallel bus

 20

structure. The goal is to raise the bandwidth without using high-speed networks while

utilizing current specifications and capabilities.

Cu and Marcos also developed a dynamic and scalable controller-algorithm for

utilizing the CSMA/CD protocol on the networks. Their controller algorithm aimed at

minimizing the transfer delay and collisions on the network. By minimizing transfer

delay, the data to be transmitted would not stay in the computer’s buffer too long, thereby

increasing throughput. Minimizing collisions on the network lessens the retransmission

of data by computers on the network. This increases throughput, thereby lessening the

transfer delay.

The algorithm begins with no knowledge of the network. The first station to send

data utilizes the first line available and upon completion of the data transfer gathers

information about transfer delay and the number of collisions. This information is

compared against set threshold values and stored for future reference. Then, over time,

as the database statistics grows, a station will choose the best line available. There are

four ways in which the station chooses:

• the highest most recent collision count and longest most recent transfer delay

• lowest most recent collision count and shortest most recent transfer delay

• highest average collision count and highest average transfer delay

• lowest average collision count and lowest average transfer delay

The performance increases as the number of network lines increases because

stations distribute their data well among the network lines. However, since the existing

CSMA/CD protocol is used, the more stations that utilize the medium, the more

collisions occur, resulting in decreased throughput and transfer delay. Also based on a

simulation analysis, smaller packet size had greater throughput [Ref. 31].

8. Hybrid Channel Allocation in Wireless Networks

The search for better channel allocation methods continues to be one of the major

challenges in wireless communication network design. One such method is the hybrid

channel allocation method, which uses co-channel distance as a criterion in both the
 21

nominal channel allocation and the dynamic channel allocation in a local search

algorithm. It tries to achieve high efficiency of channel use by assigning co-channels to

cells that are close to each other. This method has two parts. The first part is the nominal

channel allocation, in which a local search algorithm is employed. The second part deals

with dynamic channel allocations, where minimizing co-channel distance is the goal.

The local search algorithm usually gives results with smaller co-channel distance.

Therefore, channels are reused in cells that are closer to each other than in other nominal

channel assignment schemes. As a result, a channel can be reused in more cells. The end

result is more channels are available for dynamic allocation [Ref 32].

9. Beowulf Ethernet Channel Bonding

A by-product of using older computers in a NASA research lab resulted in a

technique called Beowulf Ethernet Channel Bonding in 1994. This technique increases

network bandwidth by utilizing clusters, which are any collection of more than one

computer that can be accessed independently but also as a unit. In other words, it creates

a single logical network by being transparent to the applications. Beowulf utilizes the

Linux and Unix operating systems on an Ethernet-based network. To minimize protocol

overhead and support the latest possible load-balancing decision making processes,

Beowulf channel bonding is implemented at the device queue layer in the Linux kernel,

below the IP protocol level. This has several advantages:

• Load-balancing may be done just before the hardware transmit queue, after

the logical address (e.g. IP address) and the physical address (e.g. Ethernet

station address) are added to the frame.

• Fragmented packets, usually large UDP/IP packets, take advantage of the

multiple paths.

• Networks Stations that fail completely first fill their hardware queues, and are

subsequently ignored [Ref. 33].

Channel bonding allows multiple network cards to be used as if they were one.

Traffic is simply load-balanced over the multiple devices. There is no need to have one

 22

separate switch per branch in the network. Further, for bonding to work, it is critical that

all the boards in one machine have the same MAC (Ethernet) address. This would

confuse a single switch, since it would not know to which port it should send a packet

destined to a given MAC address [Ref. 34]. In other words, channel bonding combines

multiple Ethernet connections between nodes into a single virtual channel similar to

CSMA/CD based multiple network lines, in order to overcome bandwidth limitations,

such as a 10Mbps Ethernet.

Linux is used since it proves to be robust, efficient, and ready to use. The

availability of source code and limited licensing constraints permitted modification of the

kernel to support multi-channel Ethernet communications. In a study of heterogeneous

channel bonding on a Beowulf cluster, Baosong Zhao and Daniel Andersen, of Kansas

State University, concluded that Gigabit Ethernet and channel bonding have greater

network bandwidth than Fast Ethernet. Furthermore, they determined that multiple

channels do scale in terms of both data bandwidth and transfer rate, and that packet size

is very important for deriving the best performance from available communication

resources [Ref. 35].

F. SUMMARY

This chapter examined channel allocation and techniques used. Two major

methods of channel allocations are examined and compared: fixed and dynamic. Both

methods have advantages and disadvantages, but the primary distinction was that DCA

performs better under light or moderate loads where as FCA becomes superior under

higher traffic loads.

The channel allocation problem is classified as an NP-complete problem.

Therefore, an approximation to the solution may be sufficient by using heuristic methods.

Finally, this chapter examined some techniques currently employed. Inverse

multiplexing, time division multiplexed on demand, CSMA/CD based multiple network

lines, and hybrid channel allocation in wireless networks were some of the methods used

in trying to maximize throughput.

 23

The next chapter discusses one type of solution to channel allocation. Two types

of scheduling algorithms are devised from which a computer simulation is developed.

The algorithms are based on a first-come-first serve and a fair distribution from which a

comparison is made between them as well as the number of dynamic channels available.

 24

III. DETERMINING A SOLUTION

A. HOW DOES A STATION RECEIVE A CHANNEL

The first problem is to determine how a station will receive a channel. Our goal is

to use dynamic channel allocation to recover some of the channel capacity wasted using

full duplex. In addition, the synchronization must be looked at, using something such as

a token. A control channel may also be introduced but this takes bandwidth and / or

some associated overhead.

The two main approaches to wireless MAC protocols are mediated and

contention. In a polling-based MAC protocol, one form of mediated access, a

coordinator station is responsible for all the frame transmissions on the shared wireless

medium. A wireless station that wants to transmit must wait until the coordinator station

polls it. In contrast, a coordinator station is not required in a contention based protocol.

Any wireless station that wishes to transmit does so if the wireless medium is available.

The wireless stations are, in fact, contending for the shared medium, and thus, collisions

are inevitable, as demonstrated by the Aloha protocol.

Fair allocation of bandwidth between channels and maximizing channel

utilization are two important goals when designing a wireless MAC protocol.

Unfortunately, there are inherent conflicts between these two design goals. For example,

maximum channel utilization may be achieved if there is only one station transmitting

continuously with zero back off, while all the other stations are starved. It is very

difficult to maximize the channel utilization subject to the constraint of achieving fairness

among traffic flows [Ref. 36].

B. QUEUEING

A queue is a storage of elements awaiting an action. Some common approaches

to queuing are first come first serve, pushing and popping a stack, and priority.

Tanenbaum characterizes queuing systems by five components:

 25

• The interarrival-time probability density function

• The service-time probability density function

• The number of servers

• The queuing discipline

• The amount of buffer space in the queues [Ref. 37].

Queuing is typical in computer networking with packets. Most packet switches

store-and-forward transmission at the inputs to the links. Store-and-forward transmission

means that the switch must receive the entire packet before it can begin to transmit the

first bit of the packet onto the outbound link. Thus, store-and-forward packet switches

introduce a delay at the input to each link along the packet’s route. This delay is

proportional to the packet’s length in bits. In addition, packets suffer output queuing

delays, which are variable and depend on the level of congestion in the network [Ref. 38].

Tanenbaum mentions Kleinrock’s queuing theory (1964) for a communication

channel. He addresses the capacity of the channel and states that the mean packet size

does not depend on the channel, as the capacity and input rate do. However, problems

arise when several channels of varying size are encountered in a network.

Tanenbaum uses an example of dedicated versus shared channels. In his example,

there are two computers connected by a 64 Kbps line. There are eight parallel sessions

using the line. Each session generates Poisson traffic with a mean of 2 packets/sec. The

packet lengths are exponentially distributed with a mean of 2000 bits. By using TDM or

FDM, each 8 Kbps channel operates as an independent queueing system with λ=2

packets/sec and µ=4 packet/sec, and the total time (queueing and transmission) is 500

msec. By using a single 64Kbps system, λ=16 packets/sec and µ=32 packets/sec.

resulting in a total time of 66.7 msec. By splitting up a single channel into k fixed size

pieces makes the response time k times worse. The reason is that it frequently happens

that several of the smaller channels are idle, while other ones are overloaded resulting in

lost bandwidth that can never be regained [Ref. 37].

 26

C. PROPAGATION DELAY

Propagation time is the measure of time required for a signal (or a bit) to travel

from one point of the transmission medium to another. The propagation time is

calculated by dividing the distance by the propagation speed. In addition, the processing

time of a station, which normally is an insignificant value, contributes to the overall

delay; however, this is not part of the propagation delay [Ref. 37].

The propagation delay is considered since it contributes to the total amount of

time taken for the delivery of data. Different protocols and congestion flow may impact

the number of propagation delays that must be considered, but the delay itself is a result

of distance and speed only. For example, a protocol, such as Stop and Wait, that requires

an acknowledgement for each packet is going to add significant delay since the amount of

the propagation time doubles compared to a protocol that simply sends packets without

acknowledgement or acknowledges at the end. Of course, the protocol that doesn’t

acknowledge each packet may require other actions to recover from packet loss.

D. SIMULATION DESIGN

The program developed is written in Java, SDK 1.4, from Sun MicroSystems.

The reason for this is the author is more familiar with Java than any other programming

language. The design is based on a simple model shown in Figure 7 below:

 27

Main class

display logic

Figure 7 Design of Program

E. CLASS DESIGN

From this there are five classes created as shown in Figure 8. The main class is

called ChannelAllocation. It is from this class the program begins execution. The

display is shown through the DisplayChannel class that has a child class called

DisplayDeliveryTime. These two classes display to the system screen a matrix of

channels by time periods. In addition, a file is created identical to the screen display.

The logic for manipulating the data elements (frames) by using dynamic channels is

contained in the scheduling algorithms. In this case, there are two scheduling algorithms,

one called FirstComeFirstServe and the other FairDistribution.

 28

ChannelAllocation

DisplayChannel

DisplayDeliveryTime

FirstComeFirstServe FairDistribution

Figure 8 Class Design

The program centers on the matrix of channels and time periods. There are a

finite number of channels and time periods. The simulation represents a bandwidth pipe

shared between five hosts. The pipe is divided into channels, which are identified as

fixed or dynamic. Each cell in the matrix can contains a data element (frame) and the

block of data can span over several consecutive time periods. In addition, back-to-back

data submission by individual hosts may occur. However, since this is a finite

simulation, there are a fixed number of time periods.

Each time period reflects both the round-trip propagation delay between hosts and

the transmission time of the data element. Transmission time of an acknowledgement is

assumed to be negligible. Since an increase in the number of channels into which the

pipe is divided proportionally decreases the transmission rate for the individual channels,

the modeled time period must increase to reflect the change in transmission time. A

 29

Stop-and-Wait protocol is assumed to simplify the allocation of data elements between

the available channels.

Set values for the fixed channels are included in this design. One reason is for

ensuring the program is working correctly, another is to set a reference. However, to

make the simulation more realistic, data traffic randomness is used. This demonstrates

dynamic channel allocation in progress.

The goal of creating this model is to see the effect of using dynamic channels and

the impact, if any, of the time delivery. By adjusting the number of the dynamic channels

an approximate ratio of fixed to dynamic channels may be obtained.

1. Channel Allocation

This is the main class from which the program executes. There are six static

variables that are fixed and can be called from any of the other classes. Table 1 describes

the variables.

Variables

Name Description

CHANNELS The number of channels on the bandwidth

TIMEPERIODS The number of time periods.

FIXCHANNELS The number of fixed channels

SETTINGS The identifying characteristics of the channel such as the type

of channel (fixed or dynamic)

FIXCHANNELID An abbreviation of “F” to denote fixed

DYNCHANNELID An abbreviation of “D” to denote dynamic

Table 1 Variables in Channel Allocation class

 30

Since this is the primary class the main method from which the program starts

executing is included. There are administrative functions performed also, such as making

sure a file can be written, assigning a string name for the file, and creation and

initialization of arrays and strings.

A two dimensional array is created to represent channels and time periods. Since

this is a simulation there are a finite number of time periods. This size of the matrix is

determined by the static variables CHANNELS and TIMEPERIODS, defined in this

class. This matrix is also a string type, since the values entered will be alphanumerical, a

text prefix identifier, i.e., a or ab, and a sequence number. Therefore, a cell in the matrix

may contain the values such as a0, a1, zB34. Another matrix is made identical to the

main matrix, as a backup copy. Once the values in the main matrix are modified and

another test needs to be run, the backup matrix can be used to copy the initial values back

over to the main matrix. This is done to ensure the same sequence of data elements are

used by each test run. The number of dynamic channels will be altered to provide an

appropriate mix of fixed and dynamic channels. Note that the number of fixed channels

remains constant across test runs to reflect the fact that each host has a dedicated channel

assigned and then competes for access to the available dynamic channels.

Another two dimensional array is created to contain the characteristics of each

channel. Therefore, the matrix is made by the static variable, CHANNELS x 2. This

matrix holds a characteristic for each channel. This is the type, either fixed or dynamic.

More characteristics can be implemented in the future by simply increasing the size of the

matrix by CHANNELS x (n).

All the matrices are initialized with null values ensuring correct values held in

memory. In addition, after each test is run, the matrices are reinitialized.

A string array is created to hold unique prefix identifiers. There are a set number

defined in this array, but more can be added. When random values are generated a check

is made to ensure an identical one isn’t already being used. Alphabetical characters are

used in combination with upper and lower case. For example, there are a, b, c, aa, bb, cc,

Ab, Fta, ZZZ, etc.

 31

Next there are four modal Graphical User Interfaces (GUIs) windows. When the

program begins these windows appear asking the user (1) “Do you want random values

generated”, (2) “ Do you want to append or overwrite an existing file, (3) “What type of

scheduling algorithm do you wish to run, i.e., First Come First Serve, Fair Distribution,

or both”, and (4) “the number of tests to run”. These allow the user to tailor the

simulation run.

The class then runs a “baseline test” to show the progression of data transmission

with fixed channels only. The backup matrix copy is also performed. Next, the

simulation runs seven tests for each scheduling algorithm:

• one with 16% of the channels being allocated as dynamic (1 channel)

• one with 28% of the channels being allocated as dynamic (2 channels)

• one with 38% of the channels being allocated as dynamic (3 channels)

• one with 44% of the channels being allocated as dynamic (4 channels)

• one with 50% of the channels being allocated as dynamic (5 channels)

• one with 66% of the channels being allocated as dynamic (10 channels)

• one with 75% of the channels being allocated as dynamic (15 channels)

The key is that the number of fixed channels remains constant, and the number of

dynamic channels determines the portion of the original capacity available to each

channel.

Table 2 describes the methods in this class.

Methods

Name Return Type Description

constructor Default

start void This starts the program. It creates a two

 32

Methods

Name Return Type Description

dimensional array called a Channel Time

Period matrix and initializes all the values

to null. In addition, an identical array is

made which will contain the same

information as the original. This is copied

back once the original has been modified.

Another two dimensional array is created

and called assignedChannel. It also has all

its contents initialized to null. Another

array is created to contain the Strings for

prefix identifications.

The user is prompted with four GUIs that

ask if the user wants random values, to

append a file, which scheduling algorithm

to run, and the number of tests. Based on

this the program runs and displays the

contents before any scheduling algorithm

takes place. Next the data in the Channel

Time Period matrix is manipulated through

3 cases of the desired algorithm. One with

50% the channels assigned as dynamic, the

second with 66% of the channel assigned

as dynamic, and finally the third with 75%

of the channels assigned as dynamic.

userGeneratesRandomNum

bers

boolean This GUI asks the users whether or not to

use random numbers to determine data

arrival and duration values

 33

Methods

Name Return Type Description

userInputAppendFile boolean This GUI asks the user whether or not to

append the results to an existing file

userInputSchedulingAlgorit

hm

int This GUI asks the user to select a

scheduling algorithm. This program

provides two algorithms: First Come First

Serve and Fair Distribution. In addition,

both can be selected in a test run.

userInputNumberOfTests int This GUI asks the user to enter the number

of tests to run.

ratioOfT int Calculates the ratio of fixed channels to

total channels. For example,

5:5 is 1 (0% dynamic channels)

5:6 is 1.2 (16% dynamic channels)

5:7 is 1.4 (28% dynamic channels)

5:8 is 1.6 (38% dynamic channels)

5:9 is 1.8 (44% dynamic channels)

5:10 is 2 (50% dynamic channels)

5:15 is 3 (66% dynamic channels)

5:20 is 4 (75% dynamic channels)

changeNumberDynamicCh

annels

int Changes the numbers of dynamic channels;

currently, the program utilizes the numbers

of 1, 2, 3, 4, 5, 10, and 15

createFileName string This creates a name for the output file

 34

Methods

Name Return Type Description

initializeOriginalTransferTi

me

void Initializes the original transfer time matrix

to zero values

initializeChannelTimePerio

dMatrix

void Initializes the Channel and Time Period

matrix to null values

setSomeFixValuesChannel

TimePeriodMatrix

void Some defined values are set for

representing traffic in the Channel and

Time Period Matrix. This helps in

troubleshooting and verifying the program

setSomeRandomValuesCha

nnelTimePeriodMatrix

void Random values are set for representing

traffic in the Channel and Time Period

Matrix

initializeAssignedChannel void Initializes the Assigned Channel matrix to

null values

setAssignedChannel void Sets the assigned channel as fixed or

dynamic

setInitialData void Sets the initial data in the Channel and

Time Period matrix

copyOriginalMatrix void Copies the initial values placed in the

Channel Time Period matrix to an identical

array so the values can be used again in

future scenarios

restoreOriginalMatrix void Restores the original values from the

backup Channel Time Period matrix to the

original Channel Time Period matrix

 35

Methods

Name Return Type Description

initializeMatrixForAnother

Test

void Initialize matrices for another test using the

same original data

runBeforeTest void Runs the data before any scheduling

algorithm begin. This provides a reference

point against which to compare channel

mixes

runTest void Runs the data through the scheduling

algorithm

Table 2 Methods in Channel Allocation class

2. Display Channel

This class is responsible for displaying the contents of the main channel and time

period matrix. It displays the output to a system screen, in the case of Windows it is the

DOS window, and to a text file. Both outputs have the same information. For each test

that is run a text file is created. For example, when the original test is run in which no

dynamic channels are used, a text file is created. The seven tests with dynamic channels

are appended after the original test. From the main channel allocation class, the user was

prompted if he/she wants to append to an existing file. If the append is “YES” then when

the next test is ran the output is appended to the end of the text file. In the case of “NO,”

the current text file, if one exists, is overwritten when the test is ran.

There is a variable for displaying the screen width. In the original design, the

width of the screen accommodated the size of the matrix. However, as the matrix

expanded to as many as 50 time periods, it was not practical to display it all at one time.

Rather, by changing the variable for displaying the screen width, the user can allow

properly display to the screen, as well as the text file. For example, if the variable is set

 36

to a value of 7, then the first 7 time periods are shown, then below that are the next 7, and

below that the next 7, and so on until all time periods are displayed.

The following table describes the methods in this class.

Methods

Name Return Type Description

constructor Default

displayMatrix void Displays the main Channel and Time

Period matrix both to the screen and a text

file. This is the main function in this class

that calls other functions within the class.

displayAssignedChannel void Displays the contents of the channel

assignment (fixed or dynamic). This helps

in troubleshooting.

calculateCurrentChannelUt

ilization

double Calculates current channel utilization.

calculateCurrentTimePerio

dUtilization

double Calculates current time period utilization

calculateOverallUtilization double Calculates the overall utilization of the

channels and time periods. This also helps

in checking that the same value is returned

in all the tests that are ran.

calculateDisplayBreaks double Calculates the total number of display

breaks for the screen. This is useful when

all the time periods in the Channel Time

Period matrix cannot be properly displayed

on a particular screen.

 37

Methods

Name Return Type Description

calculateBeginFrom int Calculates where the beginning of the

matrix is for each display break. For

example, if the desired display break is 7

then the beginFrom value will be 0 for the

first display, 7 for the next, 14 for the next,

and so on.

calculateEndAt int Calculates where the end of the matrix is

for each display break. For example, if the

desired display break is 7 then the endAt

value will be 6 for the first display, 13 for

the next, 20 for the next, and so on.

calculateLeadingSpacesIN

T

int Calculates the number of the leading spaces

to align the variable in the cell.

calculateTrailingSpacesIN

T

int Calculates the number of the trailing spaces

to align the variable in the cell.

calculateDigits int Calculates the number of digits in a number

findCellVariableSize int Calculates the number of characters in the

cell.

calculateLeadingSpacesCH

AR

int Calculates the number of leading spaces to

align the variable in the cell.

calculateTrailingSpacesCH

AR

int Calculates the number of trailing spaces to

align the variable in the cell.

calculateNumberChannels

UsedPerTimePeriod

double calculate the number of channels used

during a time period

 38

Methods

Name Return Type Description

calculateNumberChannels

Assigned

double calculate the number of channels assigned

either as fixed or dynamic

calculateBandwidthUtilizat

ion

double calculate the bandwidth utilization

Table 3 Methods in Display Channel class

3. Display Delivery Time

This class is a child of the display channel class. It summarizes the values from

the main channel and time period matrix. A table is created which contains (a) the data

message prefix, (b) the size of the data message over time periods, (c) the size of the data

message over time periods using fixed channels (d) the size of the data message over time

periods using dynamic channels, (e) the RTT, and (f) the average of all the data

messages.

The output is given after the main channel time period matrix is displayed. In

addition to the screen display, an identical copy is appended to the text file.

Another text file is created with data generated from the tests. In the file are (a)

the test number, (b) the scheduling algorithm used, (c) the number of fixed channels, (d)

the number of dynamic channels, and (e) the average of all the data messages. Commas

separate the five data elements. The file is designed to be imported into a Microsoft

Excel spreadsheet.

Table 4 describes the methods in this class.

Methods

Name Return Type Description

 39

Methods

Name Return Type Description

constructor Default

delivery void Calculates and displays the delivery time

through the use of dynamic channels.

dataFileName string Creates a name for a graph text file.

dataIdPrefix string Finds the data block identifiers (the prefix)

in the Channel Time Period matrix

displayTimeDeliveryMatri

x

void Displays the contents of the delayDataID

matrix and delayDataNumber matrix.

maxLength int Finds the maximum length of the variables

stored in the array for proper display on the

screen.

numberSpacesCHAR int Calculates the number of spaces for proper

display on the screen using characters

numberSpacesINT int Calculates the number of spaces for proper

display on the screen using integers

calculateLeadingSpaces int Calculates the number of leading spaces to

align the variable in the cell

calculateTrailingSpaces int Calculates the number of trailing spaces to

align the variable in the cell

storeDataIds void Store the data identifiers (prefixes) in the

array.

countStoreDataBlockSize void Count the data block size for each data

identifiers (prefixes) and store the value in

the array

 40

Methods

Name Return Type Description

countStoreRTT void Count the time periods taken for the data

block for each data identifiers (prefixes)

and store the value in the array

calculateStoreT void calculate and store T

calculateDisplayThroughpu

tChange

void Calculate the delivery time change and

display the result

calculateOverallDeliveryC

hange

double Calculate the delivery time increase

calculateDeliveryTime void Calculate the delivery time: (RTT+T)

writeToExportDataFile void Export data to a file which will be used in a

Microsoft Excel spreadsheet. The file has

commas to deliminate between data

valueForGraph void Create (or append) a file for writing the

results to. The results will be used for

plotting a graph.

Table 4 Methods in Display Delivery Time class

4. First Come First Serve

The channel allocation class calls upon this class. The basic idea is the

manipulation of the data in the fixed channels with the dynamic channels available. As

the name of the class implies, it is a first come first serve scheduling algorithm. A flow

chart of the algorithm is shown in Figure 9.

 41

start

Is data being sent on the
fixed channel

Look at the current
time period

Is this the last time
period*

no

*for simulation
there will be a

final time period

Increase time period
by oneno

stop

yes

Are any dynamic
channels freeyes

noAre the free dynamic
channels the same size

yes

Queue next block

Are all the dynamic
channels occupied to

current tp

Look at the current
fixed channel

Increase fixed channel
by one

Is this the last fixed
channel

no

Adjust data block to
fit dynamic channel

size

yes

noyes

Assign all free
dynamic channels to

data message on
current channel

yes

no

Figure 9 First-Come-First-Serve Flow Chart

 42

The pseudo code for the algorithm is defined in Figure 10. It begins by looking at

the first time period and then the first fixed channel in that time period. If no data is

transmitted at this time, then the next fixed channel is examined, and the process

continues until data is found. If no data is found on the fixed channels in the current time

period, then the next time period is looked at in the same fashion. Once data is found on

a fixed channel the data message is examined to see if it is longer than two time periods.

The reason is if it were less than three time periods there would be insufficient time to

allocate any dynamic channels. If the data message is longer than two time periods, the

algorithm checks to see if any dynamic channels are free in the current time period. Once

the conditions are satisfied, the elements of data message that are in future time periods

are moved to the dynamic channels in the current time period. The algorithm allows the

first data message to use as many dynamic channels as needed. If any dynamic channels

are free in the current time period after the first message is done allocating channels, then

the next data message is allowed to use the remaining free dynamic channels.

(begin at the first time period)
for i ← 1 to the number of time periods

(begin at the first channel)
 for j ← 1 to the number of channels
 (found a fixed channel transmitting data)
 if the transmit message at i and j is NOT null AND
 the transmit message at i and j is a fixed channel
 then

(if more than two data units of the message still needs to be transmitted
that means the data ≥ i+2 can be sent dynamically)
if more than two data units of the message still need to be
transmitted

 (found free dynamic channels)
 if any dynamic channels are NULL

(move the data message of i+2 into dynamic
channels)
for k ← to the number of free dynamic
channels in i

►insert data units of i+2+k into
dynamic channel

(queue the remaining units of the data message into
NULL time periods of the same channel)

 43

if all the dynamic channels are NOT null
AND at least three more data units remain to
be transmitted

for m ← to the number of remaining
data units of the message

►insert data units of the
message ≥ m into NULL time
periods of the i+2 +m

 (increase the number of channel by 1)
 j = j+1

 (if at the end of the channels for the current time period, then increase the time period by
1)

 if at the end of the channels for current time period
 then

i = i +1

Figure 10 First-Come-First Serve Pseudo-Code

From the algorithm the program class is created. The class examines the first

fixed channel in the first time period. If data is found it is the first to use any dynamic

channels. The data message size is determined. If the size is only two time periods long

then no dynamic channels are given. This is to simulate that there is not enough time to

allocate an additional channel, nor sufficient traffic to warrant its use if allocated.

Therefore, any dynamic channels given a data message will be used to transmit data two

frames after the current frame. That is, if a source has four frames waiting to be

transmitted, only the third and fourth are eligible for transmission on dynamic channels.

With first come first serve, all the empty dynamic channels in ti + j, where ti is the

current time period and j is the offset, and beyond are given to this data message. Once

this is accomplished the algorithm examines the next channel in the current time period.

If more than two time periods of data are found, then it will be allocated channels with

the next free dynamic channels. No weight is given to one channel being more important

than another channel, all are treated equally.

Table 5 describes the methods in this class.

 44

Methods

Name Return Type Description

constructor Default

firstComeFirstServe void This is the method to run the First Come

First Serve scheduling algorithm. It calls

upon other methods within this class.

workDataMatrix void Copies the data block from the Channel

Time Period matrix to a temporary Work

Data matrix

moveWorkBackToFixedCh

annel

void Copies the data block from the temporary

Work Data matrix to the Channel Time

Period matrix. It also indicates that

particular a data block is completed by

using “YES” or “NO”

displayWorkDataBlock void Displays the contents of the temporary

Work Data matrix. This aids in

troubleshooting

moveRemainingDataBlock void Copies the remaining data blocks from the

temporary Work Data matrix back to the

Channel Time Period matrix when there are

no available dynamic channels. Thus, the

data matrix serves as a queue for

controlling data transmission

specialSwapDataCase void Ensure consecutive data elements are in

correct order over the time periods

moveSameSizeEmptyDyna

micChannel

void Copies the data blocks from the temporary

Work Data matrix back to the Channel

 45

Methods

Name Return Type Description

Time Period matrix when there are

available dynamic channels of the same

size

checkCurrentChannelFixed boolean Checks if the current channel is fixed

checkCurrentChannelUsed boolean Checks if the current channel is used

countFutureData int Checks to see if the data message is longer

than 2 time period, and if so may be used

with free dynamic channels. The idea for

this is since the current time period is

happening at this time it is too late to use

the empty channels, however, any channel

in the future time periods may be used

(perhaps, better termed: scheduled)

dataID string Determines the data block id used in the

scenarios. For example, one data block

sequence is z0, z1, z3 and another sequence

is y1, y2, y3…

findSameSizeEmptyDynam

icChannel

int Finds an empty dynamic channel of the

same size as data of a time period to be

moved

anyNO void Finds any “NO” in the Work Data Block

matrix. This may be due to not enough

empty dynamic channels. Therefore, it

places the data back into the main Channel

Time Period matrix. As a result, as future

time periods are examined this data may be

 46

Methods

Name Return Type Description

reassigned if any future dynamic channels

exist.

Table 5 Methods in First Come First Serve class

5. Fair Distribution

The channel allocation class calls upon this class. The basic idea is the

manipulation of the data in the fixed channels with the dynamic channels available. As

the name of the class implies, it is a fair distribution scheduling algorithm. This means

the available dynamic channels are distributed fairly among fixed channels. A flow chart

of the algorithm is shown in Figure 11

 47

start

Is data being sent on the
fixed channel

Look at the current
time period

Is this the last time
period*

*for simulation
there will be a

final time period

Increase time period
by oneno

stop

yes

yes

no

Are the free dynamic
channels the same size

Queue next block

Look at the current
fixed channel

Is this the last fixed
channel in this time

period

Adjust data block to
fit dynamic channel

size

Calculate length of
data to be sent on

this channel

Increase fixed channel
by one

Count number of
dynamic channels in

this time period

Calculate percentage
of dynamic channels
to allocate to each

fixed channel

no

no

yes

yes

Figure 11 Fair Distribution Flow Chart

 48

The pseudo code for the algorithm is defined in Figure 12. It begins by looking at

the first time period and then the first fixed channel in that time period. If no data is

transmitted at this time, then next fixed channel is examined, and the process continues

until data is found. If no data is found on the fixed channels in the current time period,

then the next time period is looked at in the same fashion. Once data is found on a fixed

channel the data message is examined to see if it is longer than two time periods. The

reason is if it were less than three time periods there would be insufficient time to allocate

any dynamic channels. If the data message is longer than two time periods, then the size

is temporarily stored. Once all the fixed channels have been examined in the current time

period, a total for the size of all the messages is calculated. From this a portion of the

dynamic channels is allocated to each fixed channel with a data message. As a result, a

longer data message will get more dynamic channels than a shorter data message.

(begin at the first time period)
for i ← 1 to the number of time periods

(begin at the first channel)
for j ← 1 to the number of channels

(found a fixed channel transmitting data)
if the transmit message at i and j is NOT null AND
 the transmit message at i and j is a fixed channel
then

(if more than two data units of the message still needs to be transmitted
that means the data ≥ i+2 can be sent dynamically)
if more than two data units of the message still needs to be
transmitted then temporarily store the size of the data
message

(increase the number of channel by 1)
j = j+1

(count the number of dynamic channels in this time period)
for k ← to the number of dynamic channels

(calculate the percentage of dynamic channels to allocate for each data block of
the data message temporarily stored)
for m ← to the number of data units of the data message
temporarily stored

(give a proportional fraction of the total available)
allocate the number of dynamic channels based on the size
of m by the total size of all the temporarily stored

(move the data message blocks of i+2 into dynamic channels)
►insert data units of the message of m into dynamic channels
allocated

 49
(queue remaining units of the data message into NULL time periods of the same channel)

if all the dynamic channels are NOT null AND
at least three more data units remain to be transmitted

for n ←to the number of remaining units of the data message
►queue units of the data message ≥ n into NULL time
periods of the i+2+n

(increase the time period by 1)
i = i +1

Figure 12 Fair Distribution Pseudo-Code

The class begins by examining the first channel in the first time period. If data is

found it examines the length of the data message. If it is less than three time periods

(data units) long then no dynamic channels are allocated. It would only waste a dynamic

channel. However, data of at least three units long is captured. Each channel is

examined in the current time period. After this is accomplished a calculation is made on

the number of dynamic channels to be allocated. If there are two data messages

competing for dynamic channels the one with the most data to send will be given the

most dynamic channels. For example, if there are two data messages, one of size 10 and

one of size 5, then 2/3 of the dynamic channels are given to the one of size 10, and 1/3

are given to the one of size 5.

Table 6 describes the methods in this class.

 50

Methods

Name Return Type Description

constructor Default

fairDistribution void This is the method to run the Fair

Distribution scheduling algorithm. It calls

upon other methods within this class.

countFixChannel int Counts the number of fixed channels in the

assigned Channel matrix

countDynamicChannel int Counts the number of dynamic channels in

Methods

Name Return Type Description

the assigned Channel matrix

countFoundData double Counts the total number of future data

block found during this particular time

period

calculateDynamicChannel

Allocation

void Calculates the number of dynamic channels

given to each channel needing future data

to send.

displayFutureChannelMatri

x

void Displays the contents of the FutureChannel

matrix. This aids in troubleshooting.

moveToDynamic void Moves a data block to a dynamic channel

and pushes the remaining data block up one

where there is a gap.

findDynamicChannel int Finds an empty dynamic channel in the

current time period of the Channel Time

Period matrix

moveFixedToDynamic void Moves the data element from the fixed

channel to the dynamic channel

moveRemainingFixedUp void Moves the remaining data blocks up by one

(to fill in the empty time period left be

moving a data element to a dynamic

channel – queue management)

checkCurrentChannelFixed boolean Checks if the current channel is fixed

checkCurrentChannelUsed boolean Checks if the current channel is used

countFutureData int Checks if at least three data units remain.

 51

Methods

Name Return Type Description

The idea for this is since the current time

period is happening at this time it is too late

to use the empty channels, however, any

channel in the future time periods may be

used (perhaps, better termed: scheduled)

dataID string Determines the data block id sequence used

in the scheduling algorithm. For example,

one data block sequence is z0, z1, z3 and

another is y1, y2, y3…

Table 6 Methods in Fair Distribution class

 52

IV. TESTING AND ANALYSIS OF RESULTS

A. TRAFFIC GENERATION

Traffic generation is produced with randomness. To simulate varying degrees of

traffic load, such as light, moderate, and heavy, a target utilization value is used. To

simulate a light traffic load a low number such as 0.2 is used. A number such as 0.6 is

used for simulating moderate traffic and 0.9 is used for heavy traffic.

The method begins to exam the amount of time periods available for a data

message on a fixed channel. In the beginning it starts from the first time period and

determines the number of time periods available. Next, a random message size is

generated. The method has the option of setting a minimum data message size if

required. The equation for this is:

message size = uniform (0, (target utilization)(time periods available))

message size = max (minimum message size, message size)

The final random step is to generate a start point. Of course, the start point must

accommodate the data message size with the time periods available. For example, if only

ten time periods are available and the data message size requires the occupation for eight

of those time periods, then the start point cannot be later than time period 2. There is

another option to limit the amount of space allowed to generate the start point called

maximum message gap. The equation for this is:

gap between messages = uniform (0, maximum message gap)

This can prevent a start point from occurring near the end of the space available,

which may prevent more data messages from being produced. The next random data

message begins after the previous data message.

Figure 12 shows an example of how random traffic may be generated on a fixed

channel. In this example there are 500 time periods available. The first data message

produced is “a”. A random size is generated for the data message, which in this case it

occupies approximately ¼ of the space available. Next a random start point is generated,

 53

which is shortly after the beginning time period. Again, since “a” has all the space

available it may be better to use the option of setting the start point at an early point with

the maximum message gap. Once data message “a” is completed, the method determines

the free space available from the end of data message “a”. The same process continues

and data message “b” is produced. Its start point begins after some empty time periods

from the end of the data message “a”. Since there is still some available space after data

message “b” another data message is produced, in this case “c”. The size of data message

“c” occupies nearly all the space available. In addition, its random start point happens to

begin immediately after data message “b”. Since there is very little time periods left after

the end of data message “c” the method stops.

data msg “ a” data msg “ b”

available space to generate data msg “a”

data msg “ c”
time period 0 time period 500

available space to generate data msg “b”

available space to generate data msg “c”

gap between messages
no gap between messages

Figure 13 Example of Data Traffic Generation on a Fixed Channel

 54

B FIRST COME FIRST SERVE

1. Testing

The first scheduling algorithm tested is the First-Come-First-Serve. The

following eight tests are with this allocation method. The parameters used were:

Scheduling Algorithm: First Come First Serve

Test case

identifier

Number

of

channels

Number

of fixed

channels

Number of

dynamic

channels

Percent of

dynamic

channels

Ratio of

total to

fixed

channels

A 5 5 0 0% 1

B 6 5 1 16% 1.2

C 7 5 2 28% 1.4

D 8 5 3 38% 1.6

E 9 5 4 44% 1.8

F 10 5 5 50% 2

G 15 5 10 66% 3

H 20 5 15 75% 4

Table 7 First Come First Serve Test Case A-H

Test A is the base case from which the following seven tests are compared

against. Test A does not use any dynamic channels. The following five tests increase the

number of dynamic channels by one, and the next two increase the number of dynamic

channels by five. Preliminarily tests indicated the most change would likely occur when

the number of dynamic channels was equal to or less than the number of fixed channels.

 55

2. Results

The following tables represents the data traffic sent, as generated randomly for

start time and duration. A random message size is generated to fit within the allotted

time periods for each channel. The start time is randomly generated and no other random

data message can begin until the a free time period exists, as well as ensuring there is no

stepping over onto another data message. The channels are identified either as fixed (F)

or dynamic (D). The size is relative to the transmission of a fixed size data unit (frame).

Contiguous data units are identified by alphanumeric characters, such as b0, b1, b2 being

a set of data and c0, c1, and c2 being another set of data. The percentage of channels

used for a given time period, across all channels, is identified at the bottom of that time

period’s column. A summary is given at the bottom indicating the total number of data

units in a given data message and the number of time periods taken to complete the data

message delivery. In addition, the channels used are broken up into fixed and dynamic.

As no specific transmission rate or propagation time is used, the actual expected times

can be generated for a range of values. The very last item is the average of all the data

messages over the delivery time.

 56

Table 8 shows the output of Test A. Test A uses five fixed channels, which are

denoted as “F” to the left of the channel in the matrix. There are no dynamic channels,

and this test serves as the base case. There are seven data messages in this scenario,

identified as “a”, “b”, “h”, “d”, “f”, “e”, and “i”. This test utilizes seven time periods, 0

to 6, for the sake of displaying the matrix on a page, however, more relevant data is

obtained from increasing the time periods to a larger number. Increasing the time periods

is done later in the test for the analysis. The summary table describes the data message

size, the number of fixed channels used, the number of dynamic channels used, the RTT,

and the average of all the data messages.

CA-bothScenarios.txt TEST #1
both scheduling algorithm

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a2 | a3 | a4 | a5 | a6 |
F channel 2 | | b0 | b1 | b2 | b3 | b4 | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | e2 | |
F channel 5 | | i0 | i1 | i2 | i3 | i4 | |
--
channels used | 3 | 5 | 5 | 5 | 4 | 5 | 2 |
bw utilization | 60% | 100% | 100% | 100% | 80% | 100% | 40% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 7| 5| 4| 2| 3| 3| 5|
data msg size (D) | 0| 0| 0| 0| 0| 0| 0|
 RTT value: 1 | 7| 5| 4| 2| 3| 3| 5| 4.143

Table 8 Test A with no dynamic channels

 57

Table 9 represents Test B in which one dynamic channel (16% of the total

channels) is used and the scheduling algorithm is the First-Come-First-Serve. Data

message “a” is on the first channel which gets the first dynamic channel. No other data

message is allowed to transmit on the dynamic channel as long as “a” has a transmit

opportunity. It is not until time period 4 that data message “a” no longer needs a dynamic

channel and the next data message is allowed to use the dynamic channel, in this case it is

data message “b”. The average time has also decreased from the average time in Test A.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a3 | a5 | | | |
F channel 2 | | b0 | b1 | b2 | b3 | | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | e2 | |
F channel 5 | | i0 | i1 | i2 | i3 | i4 | |
D channel 6 | | a2 | a4 | a6 | b4 | | |
--
channels used | 3 | 6 | 6 | 6 | 4 | 3 | 1 |
bw utilization | 50% | 100% | 100% | 100% | 67% | 50% | 17% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 4| 4| 4| 2| 3| 3| 5|
data msg size (D) | 3| 1| 0| 0| 0| 0| 0|
 RTT value: 1 | 4| 4| 4| 2| 3| 3| 5| 3.571

Table 9 Test B with 1 dynamic channel (16% of the total channels) using
First-Come-First-Serve scheduling algorithm

 58

Table 10 represents Test C in which two dynamic channels (28% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting earlier than in

Test B, and data message “b” begins using dynamic channels in time period 3 versus time

period 4 in Test B. Again, the average time has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

--
F channel 1 | a0 | a1 | a4 | | | | |
F channel 2 | | b0 | b1 | b2 | | | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i3 | i2 | | |
D channel 6 | | a2 | a6 | b4 | i4 | | |
D channel 7 | | a3 | a5 | b3 | e2 | | |
--
channels used | 3 | 7 | 7 | 6 | 4 | 1 | 1 |
bw utilization | 43% | 100% | 100% | 86% | 57% | 14% | 14% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+----
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 3| 3| 4| 2| 3| 2| 4|
data msg size (D) | 4| 2| 0| 0| 0| 1| 1|
 RTT value: 1 | 3| 3| 4| 2| 3| 2| 4| 3.0
--------------------+----+----+----+----+----+----+----|

Table 10 Test C with 2 dynamic channels (28% of the total channels) using
First-Come-First-Serve scheduling algorithm

 59

Table 11 represents Test D in which three dynamic channels (38% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting in time period 2,

and data message “b” begins using dynamic channels in time period 2. Again, the

average has decreased from the previous three tests.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a5 | | | | |
F channel 2 | | b0 | b1 | b4 | | | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i2 | | | |
D channel 6 | | a2 | a6 | i3 | e2 | | |
D channel 7 | | a3 | b2 | i4 | | | |
D channel 8 | | a4 | b3 | | | | |
--
channels used | 3 | 8 | 8 | 6 | 2 | 1 | 1 |
bw utilization | 38% | 100% | 100% | 75% | 25% | 13% | 13% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 3| 3| 4| 2| 3| 2| 3|
data msg size (D) | 4| 2| 0| 0| 0| 1| 2|
 RTT value: 1 | 3| 3| 4| 2| 3| 2| 3| 2.857

Table 11 Test D with 3 dynamic channels (38% of the total channels) using
First-Come-First-Serve scheduling algorithm

 60

Table 12 represents Test E in which four dynamic channels (44% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting on dynamic

channels in time period 2, and data message “b” begins using dynamic channels in time

period 2 and is able to complete transmission in time period 2. Another free dynamic

channel exists in time period 2 and data message “h” utilizes it. Again, the average time

has decreased from the previous four tests, but the change is not as much as previously

observed.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a6 | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | h2 | | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i2 | | | |
D channel 6 | | a2 | b2 | i3 | e2 | | |
D channel 7 | | a3 | b3 | i4 | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | h3 | | | | |
--
channels used | 3 | 9 | 9 | 4 | 2 | 1 | 1 |
bw utilization | 33% | 100% | 100% | 44% | 22% | 11% | 11% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 3| 2| 3| 2| 3| 2| 3|
data msg size (D) | 4| 3| 1| 0| 0| 1| 2|
 RTT value: 1 | 3| 2| 3| 2| 3| 2| 3| 2.571

Table 12 Test E with 4 dynamic channels (44% of the total channels) using
First-Come-First-Serve scheduling algorithm

 61

Table 13 represents Test F in which five dynamic channels (50% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting on the dynamic

channels in time period 1, and data message “b” begins using dynamic channels in time

period 2 and is able to complete transmission in time period 2. In addition, data message

“h” uses a dynamic channel and completes its transmission, and data message “i” utilizes

the last free dynamic channel in time period 2. Again, the average time has decreased

from the previous five tests, but the change is not as much as previously observed.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | h2 | | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i3 | | | |
D channel 6 | | a2 | b2 | i4 | e2 | | |
D channel 7 | | a3 | b3 | | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | h3 | | | | |
D channel 10 | | a6 | i2 | | | | |
--
channels used | 3 | 10 | 9 | 3 | 2 | 1 | 1 |
bw utilization | 30% | 100% | 90% | 30% | 20% | 10% | 10% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 2| 2| 3| 2| 3| 2| 3|
data msg size (D) | 5| 3| 1| 0| 0| 1| 2|
 RTT value: 1 | 2| 2| 3| 2| 3| 2| 3| 2.429

Table 13 Test F with 5 dynamic channels (50% of the total channels) using
First-Come-First-Serve scheduling algorithm

 62

Table 14 represents Test G in which ten dynamic channels (66% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting on dynamic

channels in time period 1, and data messages “h” and “f” begins using dynamic channels

in time period 1. Since no more transmit requirements exists in time period 1, two of the

dynamic channels go unused. Again, the average time has decreased from the previous

six tests, but the change is not as much as previously observed.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | | | | d0 | d1 |
F channel 4 | f0 | f1 | | e0 | e1 | | |
F channel 5 | | i0 | i1 | | | | |
D channel 6 | | a2 | b2 | | e2 | | |
D channel 7 | | a3 | b3 | | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | i2 | | | | |
D channel 10 | | a6 | i3 | | | | |
D channel 11 | | h2 | i4 | | | | |
D channel 12 | | h3 | | | | | |
D channel 13 | | f2 | | | | | |
D channel 14 | | | | | | | |
D channel 15 | | | | | | | |
--
channels used | 3 | 13 | 8 | 1 | 2 | 1 | 1 |
bw utilization | 20% | 87% | 53% | 7% | 13% | 7% | 7% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 2| 2| 2| 2| 2| 2| 2|
data msg size (D) | 5| 3| 2| 0| 1| 1| 3|
 RTT value: 1 | 2| 2| 2| 2| 2| 2| 2| 2.0

Table 14 Test G with 10 dynamic channels (66% of the total channels) using
First-Come-First-Serve scheduling algorithm

 63

Table 15 represents Test H in which 15 dynamic channels (75% of the total

channels) are used and the scheduling algorithm is the First-Come-First-Serve. Again,

data message “a” is on the first channel which gets the all the dynamic channels. No

other data message is allowed to transmit on the dynamic channel as long as “a” has a

transmit opportunity. In this case data message “a” finishes transmitting on dynamic

channels in time period 1, and data messages “h” and “f” begins using dynamic channels

in time period 1. Since no more transmit opportunities exists in time period 1 six of the

dynamic channels go unused. The average time did not change from the previous test.

CA-bothScenarios.txt TEST #1
FirstComeFirstServe

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | | | | d0 | d1 |
F channel 4 | f0 | f1 | | e0 | e1 | | |
F channel 5 | | i0 | i1 | | | | |
D channel 6 | | a2 | b2 | | e2 | | |
D channel 7 | | a3 | b3 | | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | i2 | | | | |
D channel 10 | | a6 | i3 | | | | |
D channel 11 | | h2 | i4 | | | | |
D channel 12 | | h3 | | | | | |
D channel 13 | | f2 | | | | | |
D channel 14 | | | | | | | |
D channel 15 | | | | | | | |
D channel 16 | | | | | | | |
D channel 17 | | | | | | | |
D channel 18 | | | | | | | |
D channel 19 | | | | | | | |
D channel 20 | | | | | | | |
--
channels used | 3 | 13 | 8 | 1 | 2 | 1 | 1 |
bw utilization | 15% | 65% | 40% | 5% | 10% | 5% | 5% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 2| 2| 2| 2| 2| 2| 2|
data msg size (D) | 5| 3| 2| 0| 1| 1| 3|
 RTT value: 1 | 2| 2| 2| 2| 2| 2| 2| 2.0

Table 15 Test H with 15 dynamic channels (75% of the total channels) using
First-Come-First-Serve scheduling algorithm

 64

C. FAIR DISTRIBUTION

1. Testing

The next scheduling algorithm tested is the Fair Distribution. The following eight

tests are with this allocation method as in the previous scheduling algorithm of First-

Come-First-Serve. Since Test A uses no scheduling algorithm, the results are the same as

shown in Table 8. The parameters used were:

Scheduling Algorithm: Fair Distribution

Test case

identifier

Number

of

channels

Number

of fixed

channels

Number of

dynamic

channels

Percent of

dynamic

channels

Ratio of

total to

fixed

channels

A 5 5 0 0% 1

J 6 5 1 16% 1.2

K 7 5 2 28% 1.4

L 8 5 3 38% 1.6

M 9 5 4 44% 1.8

N 10 5 5 50% 2

P 15 5 10 66% 3

Q 20 5 15 75% 4

Table 16 Fair Distribution Test Case A, J-N,P-Q

Test A is the base case from which the following seven tests are compared

against. Test A does not use any dynamic channels. The following five tests increase the

number of dynamic channels by one, and the next two increase the number of dynamic

 65

channels by five. Preliminarily tests indicated the most change would likely occur when

the number of dynamic channels was equal to or less than the number of fixed channels.

2. Results

The following tables represents the data traffic sent, as generated randomly for

start time and duration. A random message size is generated to fit within the allotted

time periods for each channel. The start time is randomly generated and no other random

data message can begin until the a free time period exists, as well as ensuring there is no

stepping over onto another data message. The channels are identified either as fixed (F)

or dynamic (D). The size is relative to the transmission of a fixed size data unit (frame).

Contiguous data units are identified by alphanumeric characters, such as b0, b1, b2 being

a set of data and c0, c1, and c2 being another set of data. The percentage of channels

used for a given time period, across all channels, is identified at the bottom of that time

period’s column. A summary is given at the bottom indicating the total number of data

units in a given data message and the number of time periods taken to complete the data

message delivery. In addition, the channels used are broken up into fixed and dynamic.

As no specific transmission rate or propagation time is used, the actual expected times

can be generated for a range of values. The very last item is the average of all the data

messages over the delivery time.

 66

Table 17 shows the output of Test A. Test A uses five fixed channels, which are

denoted as “F” to the left of the channel in the matrix. There are no dynamic channels,

and this test serves as the base case. There are seven data messages in this scenario,

identified as “a”, “b”, “h”, “d”, “f”, “e”, and “i”. This test utilizes seven time periods, 0

to 6, for the sake of displaying the matrix on a page, however, more relevant data is

obtained from increasing the time periods to a larger number. Increasing the time periods

is done later in the test for the analysis. The summary table describes the data message

size, the number of fixed channels used, the number of dynamic channels used, the RTT,

and the average of all the data messages.

CA-bothScenarios.txt TEST #1
both scheduling algorithm

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a2 | a3 | a4 | a5 | a6 |
F channel 2 | | b0 | b1 | b2 | b3 | b4 | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | e2 | |
F channel 5 | | i0 | i1 | i2 | i3 | i4 | |
--
channels used | 3 | 5 | 5 | 5 | 4 | 5 | 2 |
bw utilization | 60% | 100% | 100% | 100% | 80% | 100% | 40% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 7| 5| 4| 2| 3| 3| 5|
data msg size (D) | 0| 0| 0| 0| 0| 0| 0|
 RTT value: 1 | 7| 5| 4| 2| 3| 3| 5| 4.143

Table 17 Test A with no dynamic channels

 67

Table 18 represents Test J in which one dynamic channel (16% of the total

channels) is used and the scheduling algorithm is the Fair Distribution. Data message “a”

is the largest data message with a transmit opportunity in time period 0. Therefore, data

message “a” gets the first dynamic channel. Data message “a” continues to dominant the

dynamic channel as it is the largest data message. If two data messages with a transmit

opportunity exists, then the free dynamic channel goes to the first channel checked. In

this case the check is in numerical order. It is not until time period 4 that data message

“a” no longer needs a dynamic channel and the next largest data message is allowed to

use the dynamic channel, in this case it is data message “b”. The average time has also

decreased from the average time in Test A.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a3 | a5 | | | |
F channel 2 | | b0 | b1 | b2 | b3 | | |
F channel 3 | h0 | h1 | h2 | h3 | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | e2 | |
F channel 5 | | i0 | i1 | i2 | i3 | i4 | |
D channel 6 | | a2 | a4 | a6 | b4 | | |
--
channels used | 3 | 6 | 6 | 6 | 4 | 3 | 1 |
bw utilization | 50% | 100% | 100% | 100% | 67% | 50% | 17% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 4| 4| 4| 2| 3| 3| 5|
data msg size (D) | 3| 1| 0| 0| 0| 0| 0|
 RTT value: 1 | 4| 4| 4| 2| 3| 3| 5| 3.571

Table 18 Test J with 1 dynamic channel (16% of the total channels) using
Fair Distribution scheduling algorithm

 68

Table 19 represents Test K in which two dynamic channels (28% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. Since there are

two dynamic channels and three data messages competing for them in time period 0, a

portion is given to only two data message as in the case of data messages “a” and “h” in

time period 1. Again, the average time has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a3 | a5 | | | |
F channel 2 | | b0 | b1 | b3 | | | |
F channel 3 | h0 | h1 | h3 | | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i2 | i3 | | |
D channel 6 | | a2 | a4 | a6 | e2 | | |
D channel 7 | | h2 | b2 | b4 | i4 | | |
--
channels used | 3 | 7 | 7 | 6 | 4 | 1 | 1 |
bw utilization | 43% | 100% | 100% | 86% | 57% | 14% | 14% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 4| 3| 3| 2| 3| 2| 4|
data msg size (D) | 3| 2| 1| 0| 0| 1| 1|
 RTT value: 1 | 4| 3| 3| 2| 3| 2| 4| 3.0

Table 19 Test K with 2 dynamic channels (28% of the total channels) using
Fair Distribution scheduling algorithm

 69

Table 20 represents Test L in which three dynamic channels (38% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. Now there are

three dynamic channels and three data messages competing for them in time period 0.

However, since data message “a” is larger than data messages “h” and “f”, a larger

portion is given to “a”, and “h” gets the remaining one dynamic channel in time period 1.

Again, the average time has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a4 | a6 | | | |
F channel 2 | | b0 | b1 | b3 | | | |
F channel 3 | h0 | h1 | h3 | | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i3 | | | |
D channel 6 | | a2 | a5 | b4 | e2 | | |
D channel 7 | | a3 | b2 | i4 | | | |
D channel 8 | | h2 | i2 | | | | |
--
channels used | 3 | 8 | 8 | 6 | 2 | 1 | 1 |
bw utilization | 38% | 100% | 100% | 75% | 25% | 13% | 13% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 4| 3| 3| 2| 3| 2| 3|
data msg size (D) | 3| 2| 1| 0| 0| 1| 2|
 RTT value: 1 | 4| 3| 3| 2| 3| 2| 3| 2.857

Table 20 Test L with 3 dynamic channels (38% of the total channels) using
Fair Distribution scheduling algorithm

 70

Table 21 represents Test M in which four dynamic channels (44% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. With four

dynamic channels, data message “a” still gets the larger portion of the dynamic channels

in time period 1. Again, the average time has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a5 | | | | |
F channel 2 | | b0 | b1 | b4 | | | |
F channel 3 | h0 | h1 | h3 | | | d0 | d1 |
F channel 4 | f0 | f1 | f2 | e0 | e1 | | |
F channel 5 | | i0 | i1 | i3 | | | |
D channel 6 | | a2 | a6 | i4 | e2 | | |
D channel 7 | | a3 | b2 | | | | |
D channel 8 | | a4 | b3 | | | | |
D channel 9 | | h2 | i2 | | | | |
--
channels used | 3 | 9 | 9 | 4 | 2 | 1 | 1 |
bw utilization | 33% | 100% | 100% | 44% | 22% | 11% | 11% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 3| 3| 3| 2| 3| 2| 3|
data msg size (D) | 4| 2| 1| 0| 0| 1| 2|
 RTT value: 1 | 3| 3| 3| 2| 3| 2| 3| 2.714

Table 21 Test M with 4 dynamic channels (44% of the total channels) using
Fair Distribution scheduling algorithm

 71

Table 22 represents Test N in which five dynamic channels (50% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. Now there are

five dynamic channels and the three data messages competing for them in time period 0.

Data message “a” still gets the larger portion of dynamic channels, but now data message

“f” gets one dynamic channel as well as “h” in time period 1. Again, the average time

has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | a5 | | | | |
F channel 2 | | b0 | b1 | b4 | | | |
F channel 3 | h0 | h1 | h3 | | | d0 | d1 |
F channel 4 | f0 | f1 | | e0 | e1 | | |
F channel 5 | | i0 | i1 | i4 | | | |
D channel 6 | | a2 | a6 | | e2 | | |
D channel 7 | | a3 | b2 | | | | |
D channel 8 | | a4 | b3 | | | | |
D channel 9 | | h2 | i2 | | | | |
D channel 10 | | f2 | i3 | | | | |
--
channels used | 3 | 10 | 9 | 3 | 2 | 1 | 1 |
bw utilization | 30% | 100% | 90% | 30% | 20% | 10% | 10% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 3| 3| 3| 2| 2| 2| 3|
data msg size (D) | 4| 2| 1| 0| 1| 1| 2|
 RTT value: 1 | 3| 3| 3| 2| 2| 2| 3| 2.571

Table 22 Test N with 5 dynamic channels (50% of the total channels) using
Fair Distribution scheduling algorithm

 72

Table 23 represents Test P in which ten dynamic channels (66% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. Now there are

ten dynamic channels and the three data messages competing for them in time period 0.

Data message “a” still gets the larger portion of dynamic channels, and “f” and “h” now

get their proportional share. With more dynamic channels the proportional allocation is

more evident. Again, the average time has decreased from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | | | | d0 | d1 |
F channel 4 | f0 | f1 | | e0 | e1 | | |
F channel 5 | | i0 | i1 | | | | |
D channel 6 | | a2 | b2 | | e2 | | |
D channel 7 | | a3 | b3 | | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | i2 | | | | |
D channel 10 | | a6 | i3 | | | | |
D channel 11 | | h2 | i4 | | | | |
D channel 12 | | h3 | | | | | |
D channel 13 | | f2 | | | | | |
D channel 14 | | | | | | | |
D channel 15 | | | | | | | |
--
channels used | 3 | 13 | 8 | 1 | 2 | 1 | 1 |
bw utilization | 20% | 87% | 53% | 7% | 13% | 7% | 7% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 2| 2| 2| 2| 2| 2| 2|
data msg size (D) | 5| 3| 2| 0| 1| 1| 3|
 RTT value: 1 | 2| 2| 2| 2| 2| 2| 2| 2.0

Table 23 Test P with 10 dynamic channels (66% of the total channels) using
Fair Distribution scheduling algorithm

 73

Table 24 represents Test Q in which 15 dynamic channels (75% of the total

channels) are used and the scheduling algorithm is the Fair Distribution. Now there are

15 dynamic channels. However, since the data messages were not long enough to request

additional dynamic channels, as in the case of time period 1, six dynamic channels go

unused. As a result, the average time did not change from the previous test.

CA-bothScenarios.txt TEST #1
FairDistribution

 time period | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
--
F channel 1 | a0 | a1 | | | | | |
F channel 2 | | b0 | b1 | | | | |
F channel 3 | h0 | h1 | | | | d0 | d1 |
F channel 4 | f0 | f1 | | e0 | e1 | | |
F channel 5 | | i0 | i1 | | | | |
D channel 6 | | a2 | b2 | | e2 | | |
D channel 7 | | a3 | b3 | | | | |
D channel 8 | | a4 | b4 | | | | |
D channel 9 | | a5 | i2 | | | | |
D channel 10 | | a6 | i3 | | | | |
D channel 11 | | h2 | i4 | | | | |
D channel 12 | | h3 | | | | | |
D channel 13 | | f2 | | | | | |
D channel 14 | | | | | | | |
D channel 15 | | | | | | | |
D channel 16 | | | | | | | |
D channel 17 | | | | | | | |
D channel 18 | | | | | | | |
D channel 19 | | | | | | | |
D channel 20 | | | | | | | |
--
channels used | 3 | 13 | 8 | 1 | 2 | 1 | 1 |
bw utilization | 15% | 65% | 40% | 5% | 10% | 5% | 5% |

data message prefix | a| b| h| d| f| e| i| avg
--------------------+----+----+----+----+----+----+----+------
data message size | 7| 5| 4| 2| 3| 3| 5|
data msg size (F) | 2| 2| 2| 2| 2| 2| 2|
data msg size (D) | 5| 3| 2| 0| 1| 1| 3|
 RTT value: 1 | 2| 2| 2| 2| 2| 2| 2| 2.0

Table 24 Test Q with 15 dynamic channels (75% of the total channels) using
Fair Distribution scheduling algorithm

 74

The next set of tests run with the same parameters as before but with two changes.

The first is the time period number is changed from 7 to 500. The second is randomness

is used to generate message traffic. Examining the free time periods for each channel and

generating a message block, again a random size, with a random start point, create the

randomness. The randomness created here favored a light traffic load with an average

utilization of 28%. Table 25 summarizes the data gathered from these tests.

test scheduling
algorithm

number
of fix

channels

number
of

dynamic
channels

avg time
periods

ratio of
fix

channels
to total

channels

portion of
the

bandwidth

delivery
time

change
from the
base case

(none)

1-30 none 5 0 149.216 1.0 1.00 298.43 0.00%
1-30 FirstComeFirstServe 5 1 110.633 1.2 0.83 243.39 18.44%
1-30 FirstComeFirstServe 5 2 89.882 1.4 0.71 215.72 27.72%
1-30 FirstComeFirstServe 5 3 76.078 1.6 0.63 197.80 33.72%
1-30 FirstComeFirstServe 5 4 65.581 1.8 0.56 183.63 38.47%
1-30 FirstComeFirstServe 5 5 57.761 2.0 0.50 173.28 41.94%
1-30 FirstComeFirstServe 5 10 35.563 3.0 0.33 142.25 52.33%
1-30 FirstComeFirstServe 5 15 25.462 4.0 0.25 127.31 57.34%
1-30 FairDistribution 5 1 115.680 1.2 0.83 254.50 14.72%
1-30 FairDistribution 5 2 98.524 1.4 0.71 236.46 20.77%
1-30 FairDistribution 5 3 86.704 1.6 0.63 225.43 24.46%
1-30 FairDistribution 5 4 77.866 1.8 0.56 218.02 26.94%
1-30 FairDistribution 5 5 70.307 2.0 0.50 210.92 29.32%
1-30 FairDistribution 5 10 47.703 3.0 0.33 190.81 36.06%
1-30 FairDistribution 5 15 35.965 4.0 0.25 179.83 39.74%

Table 25 Summary of 30 tests with a light traffic load

 75

The next set of tests run with the same parameters as summarized in Table 25

with one change. The randomness created here favored a moderate traffic load with an

average utilization of 72%. The data gathered from these tests are shown in Table 26.

test scheduling
algorithm

number
of fix

channels

number
of

dynamic
channels

avg time
periods

ratio of
fix

channels
to total

channels

portion of
the

bandwidth

delivery
time

change
from the
base case

(none)

1-30 none 5 0 105.234 1.0 1.00 210.47 0.00%
1-30 FirstComeFirstServe 5 1 84.138 1.2 0.83 185.10 12.05%
1-30 FirstComeFirstServe 5 2 66.987 1.4 0.71 160.77 23.61%
1-30 FirstComeFirstServe 5 3 53.727 1.6 0.63 139.69 33.63%
1-30 FirstComeFirstServe 5 4 43.968 1.8 0.56 123.11 41.51%
1-30 FirstComeFirstServe 5 5 36.695 2.0 0.50 110.09 47.69%
1-30 FirstComeFirstServe 5 10 20.175 3.0 0.33 80.70 61.66%
1-30 FirstComeFirstServe 5 15 14.164 4.0 0.25 70.82 66.35%
1-30 FairDistribution 5 1 85.144 1.2 0.83 187.32 11.00%
1-30 FairDistribution 5 2 70.094 1.4 0.71 168.22 20.07%
1-30 FairDistribution 5 3 57.656 1.6 0.63 149.90 28.78%
1-30 FairDistribution 5 4 48.754 1.8 0.56 136.51 35.14%
1-30 FairDistribution 5 5 42.217 2.0 0.50 126.65 39.82%
1-30 FairDistribution 5 10 24.901 3.0 0.33 99.60 52.68%
1-30 FairDistribution 5 15 17.681 4.0 0.25 88.41 57.99%

Table 26 Summary of 30 tests with a moderate traffic load

 76

The final sets of tests run are the same parameters as summarized in Tables 25

and 26 with one change. The randomness created here favored a heavy traffic load with

an average utilization of 92%. The data gathered from these tests are shown in Table 27.

The data gathered from Tables 25, 26, and 27 are analyzed in the next section.

test scheduling
algorithm

number
of fix

channels

number
of

dynamic
channels

avg time
periods

ratio of
fix

channels
to total

channels

portion of
the

bandwidth

delivery
time

change
from the
base case

(none)

1-30 none 5 0 72.402 1.0 1.00 144.80 0.00%
1-30 FirstComeFirstServe 5 1 58.055 1.2 0.83 127.72 11.80%
1-30 FirstComeFirstServe 5 2 45.426 1.4 0.71 109.02 24.71%
1-30 FirstComeFirstServe 5 3 35.927 1.6 0.63 93.41 35.49%
1-30 FirstComeFirstServe 5 4 29.387 1.8 0.56 82.28 43.18%
1-30 FirstComeFirstServe 5 5 24.665 2.0 0.50 74.00 48.90%
1-30 FirstComeFirstServe 5 10 13.957 3.0 0.33 55.83 61.45%
1-30 FirstComeFirstServe 5 15 10.034 4.0 0.25 50.17 65.35%
1-30 FairDistribution 5 1 58.353 1.2 0.83 128.38 11.34%
1-30 FairDistribution 5 2 47.618 1.4 0.71 114.28 21.08%
1-30 FairDistribution 5 3 39.145 1.6 0.63 101.78 29.71%
1-30 FairDistribution 5 4 33.136 1.8 0.56 92.78 35.93%
1-30 FairDistribution 5 5 28.748 2.0 0.50 86.24 40.44%
1-30 FairDistribution 5 10 17.110 3.0 0.33 68.44 52.74%
1-30 FairDistribution 5 15 12.485 4.0 0.25 62.43 56.89%

Table 27 Summary of 30 tests with a heavy traffic load

 77

D. ANALYSIS

A test consists of fifteen subtests. One subtest is the base case from which the

two scheduling algorithms are compared to. Each scheduling algorithm runs seven

subtests from which the number of dynamic channels are changed. Figure 14 is a graph

showing the average time periods taken for each subtests. The values are taken from

Table 25. The base test is identified on the x-axis as 1. The curve on the graph indicates

as the number of dynamic channels is increased the average time periods decrease.

However, the greatest change appears initially from the base test. The two scheduling

algorithms initially perform similar until a variation begins to increase around 2 and 3

(28% and 38% of dynamic channels).

number of fixed channels = 5

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

1.
00

3.
00

5.
00

7.
00

9.
00

11
.0

0

13
.0

0

15
.0

0

number of dynamic channels

av
g

tim
e

pe
ri

od
s t

ak
en

 fo
r

de
liv

er

First Come First Serve
Fair Distribution

 1 2 3 4 5 10 15

av
g

tim
e

pe
ri

od
s t

ak
en

 fo
r

de
liv

er
y

Figure 14 Average Time Periods Taken for Delivery from Table 25 (light
load)

 78

The amount of change in the delivery time is shown in Figure 15. The values are

taken from Table 25, which ran a light traffic load. The base case is at 0% and the

change using dynamic channels decreases. In this case the delivery time decreases most

rapidly with the smaller ratio of fixed channels to total channels.

change in delivery time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ratio of fix channels to total channels

ch
an

ge First Come First Serve
Fair Distribution

 1 2 3 4 5 10 15

pe
rc

en
ta

ge
 o

f d
ec

re
as

e
in

 d
el

iv
er

y
tim

e

number of fixed channels = 5

number of dynamic channels

Figure 15 Decrease in Delivery Time from Table 25 (light load)

 79

Figure 16 utilizes the 30 tests ran as summarized in Table 26. The average time

periods taken for delivery increased from Figure 14 since the traffic load changed from a

light load to a moderate load. However, the overall results are similar in that the greatest

change occurs initially from the base test, and the curve is similar to Figure 14.

average time periods taken

0.000

20.000

40.000

60.000

80.000

100.000

120.000

1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00

ratio of fix channels to total channels

av
g

tim
e

pe
ri

od
s

First Come First Serve
Fair Distribution

 1 1.2 1.4 1.6 1.8 2 3 4

ratio of fixed channels to total channels

 1 2 3 4 5 10 15

av
g

tim
e

pe
ri

od
s t

ak
en

 fo
r

de
liv

er
y

number of fixed channels = 5

number of dynamic channels

Figure 16 Average Time Periods Taken for Delivery from Table 26
(moderate load)

 80

The change in delivery time is shown in Figure 17 using the same 30 tests as in

Figure 16. The values are taken from Table 26. The base case is at 0% and the change

using dynamic channels decreases. As in Figure 15 the delivery time decrease most

rapidly with the smaller number of dynamic channels. However, the decrease is slightly

more than in Figure 15 where the traffic load was light indicating that dynamic channels

perform better with a moderate traffic load versus a light traffic load.

change in delivery time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ratio of fix channels to total channels

ch
an

ge First Come First Serve
Fair Distribution

 1 1.2 1.4 1.6 1.8 2 3 4

ratio of fixed channels to total channels

 1 2 3 4 5 10 15

pe
rc

en
ta

ge
 o

f d
ec

re
as

e
in

 d
el

iv
er

y
tim

e

number of fixed channels = 5

number of dynamic channels

Figure 17 Decrease in Delivery Time from Table 26 (moderate load)

 81

Figure 18 shows the average time periods taken for delivery from Table 27. In

this case the traffic load was heavy which decreased the average time periods taken

compared to Figures 14 and 16. The curve on the graph is similar to the curve in Figures

14 and 16. Again, as in the other two figures, the greatest change appears initially from

the base test.

average time periods taken

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

1.
00

3.
00

5.
00

7.
00

9.
00

11
.0

0

13
.0

0

15
.0

0

ratio of fix channels to total channels

av
g

tim
e

pe
ri

od

First Come First Serve
Fair Distribution

 1 2 3 4 5 10 15

av
g

tim
e

pe
ri

od
s t

ak
en

 fo
r

de
liv

er
y

number of fixed channels = 5

number of dynamic channels

Figure 18 Average Time Periods Taken for Delivery from Table 27 (heavy
load)

 82

The final graph is shown in Figure 19. This graph shows the amount of change in

the delivery time. The values are taken from Table 27, which ran a heavy traffic load.

The base case is at 0% and the change using dynamic channels decreases. In this case the

delivery time decreases most rapidly with the smaller ratio of fixed channels to total

channels.

change in delivery time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ratio of fix channels to total channels

ch
an

ge First Come First Serve
Fair Distribution

 1 2 3 4 5 10 15

pe
rc

en
ta

ge
 o

f d
ec

re
as

e
in

 d
el

iv
er

y
tim

e

number of fixed channels = 5

number of dynamic channels

Figure 19 Decrease in Delivery Time from Table 27 (heavy load)

 83

In comparing the graphs from Figures 14 through 19 there appears to be a relation

in change occurring most dramatically with the lower ratio of fixed channels to total

channels. The change begins to decrease beyond the ratio of 2 in which the number of

dynamic channels is the same as the number of fixed channels. Therefore, if dynamic

channels are utilized the most change is going to occur between a value 1 to 2 for the

ratio of fixed channels to total channels. In addition, the tests utilized in Tables 26 and

27 simulated moderate to heavy data traffic on the fixed channels. If the data traffic were

light in load then most likely dynamic channels would go unused thereby wasting

bandwidth.

As the number of dynamic channels increases while the number of fixed channels

remains constant, the two different scheduling algorithms perform slightly differently. In

the case here, the First-Come-First-Serve scheduling algorithm performs better than the

Fair Distribution in all three tests, with the light, moderate, and heavy traffic loads,

respectively. In the First-Come-First-Serve scheduling algorithm, the first message using

dynamic channels is able to complete its transmission in less time periods than in the Fair

Distribution scheduling algorithm. The Fair Distribution algorithm will spread the

message across more time periods as long as similar sized data messages are competing

for dynamic channels, thereby increasing the number of time periods for transmission.

For example, in Table 13 where five dynamic channels are used, data message “a” is able

to complete its transmission in two time periods using the First-Come-First-Serve

algorithm. In Table 22 where the same five dynamic channels are used, data message “a”

completes its transmission in three time periods using the Fair Distribution algorithm.

However, two other data messages, “h” and “f”, are able to begin using dynamic channels

earlier under Fair Distribution. The overall delivery time average for all the data

messages with Fair Distribution is slightly higher with 2.571 versus the average of 2.429

with First-Come-First-Serve scheduling algorithm.

 84

E. POSSIBLE IMPLEMENTATIONS

Dynamic channel allocation has the potential to improve the transmission of data

with moderate traffic loads. Fixed channel allocation becomes superior under higher

traffic loads. Intuitively, it makes sense to dedicate fixed channels where there is

continuous flow of data traffic. However, with data that isn’t continuous or heavy but

moderate the use of dynamic channels may reduce the time for transmission. This may

be applied in an underwater acoustics network.

For example, an underwater acoustics network has several challenges. One of

them is the propagation delay that is inherited with underwater communications. Another

is the footprint of a station. Some stations may be hidden from another which renders

carrier detection techniques ineffective. In fact, the likelihood of two nodes transmitting

at the same time and colliding increases quite a bit. Therefore, the time to delivery data

increases dramatically compared to a network operating in free space. Using dynamic

channels may improve the delivery time.

 85

 THIS PAGE INTENTIONALLY LEFT BLANK

 86

V. CONCLUSION

A. RECOMMENDATION

Dynamic channels posses the possibility of improving the delivery time. As

networks continue to grow, more multimedia is desired, and time-sensitive applications

increase, aggressive methods will be necessary to limit delivery latency. This is

especially the case in wireless networks. Dynamic channel allocation is one such

method. As previously mentioned DCA is preferable under moderate traffic loads.

B. FUTURE WORK

The model presented in this thesis is a demonstration of dynamic channel

allocation. There are several enhancements that can be added to improve its performance

and fidelity.

The propagation delay is included as part of the duration of each cell of the

matrix. Future work may include modifying the matrix to account for both the

propagation delay and processing time. Most important, it should be modified to support

flow control mechanisms other than just Stop-and-Wait. Also, it may include congestion

control.

The control of channels can be refined. The model presented here assumes a

control station that allocates the channel. Implementing an allocation without a control

station can be beneficial in networks with stations outside of a footprint. Additionally,

the implemented model assumes a one-hop diameter network, with propagations delay

uniform throughout. A hierarchical construct should be considered.

Other scheduling algorithms may be implemented. This thesis considered only

first-come-first-served and fair distribution allocation scheduling. Others may better

utilize the dynamic channels.

Data loss was assumed to be non-existence. However, this is not the case in real

networks. Data loss can occur by many means such as channel fading, errors, and

collisions. Future work may accommodate this.

 87

Channels of varying size may reveal something interesting. This model used the

same size channels, however, an array was created to hold the value of the channel

capacity and the logic checked to make sure the data element could move into a dynamic

channel of the same size. Examining the effects of different channel sizes to find a “best-

mix of size” may hold merit.

Quality of service was not addressed in this thesis. Certain channels may have

more priority than others. Various scheduling algorithms, such as priority queues, may

allow for service qualities to be established. The Fair Distribution scenario provided an

equal amount based on the total message size but a method may be added to better

accommodate quality of service constraints, such as total latency.

 88

VI. APPENDICES

A. PROGRAM - JAVA CLASS: CHANNEL ALLOCATION

/**
 * Filename: ChannelAllocation.java
 * Date: 18 April 2003
 * Revision: 5 September 2003
 * Author: Andy Kaminsky
 * Thesis: Channel Allocation
 * Compiler: Java2 SDK 1.4
 */

/**
 * The purpose of this class is to create and
 * initialize the arrays. This class calls upon
 * other classes for the scheduling algorithms
 * such as First-Come-First-Serve or FairDistribution,
 * for manipulating the allocation of dynamic
 * channels. This class also calls upon a display
 * class to show the output.
 *
 * @author: Andy Kaminsky
 */

/**
 * Assumption(s):
 * (1) For simulation purposes time to end is set
 * with the number of TIMEPERIODS
 * (2) Unique identifiers for sets of data blocks
 * are limited to the number of prefixIDs. In
 * addition, the prefixIDs are only the lower
 * and upper case of the alphabet and 3
 * characters long.
 * (3) This program currently utilizes the global
 * variable TIMEPERIODS = 13 and CHANNELS = 20.
 * Of course, these variables can be changed,
 * just make sure the set values fall into the
 * parameters. In addition, it is best to
 * recompile all the subclasses if the global
 * variables are changed
 */

import java.awt.*;
import java.util.*;
import java.io.*;
import javax.swing.*;

 89

public class ChannelAllocation {

 //set global variables
 //*reminder to re-compile all classes if these
 //variables are changed

 //channels ont he bandwidth
 public static final int CHANNELS = 20;

 //number of time periods
 public static final int TIMEPERIODS = 13;

 //number of fixed channels
 public static final int FIXCHANNELS = 5;

 //identifiers for each channel
 public static final int SETTINGS = 2;

 //abbreviation to denote fixed
 public static final String FIXCHANNELID = "F";

 //abbreviation to denote dynamic
 public static final String DYNCHANNELID = "D";

 public ChannelAllocation(){}

 public static void main(String[] args) {

 ChannelAllocation myChannelAllocation;
 myChannelAllocation = new ChannelAllocation();
 myChannelAllocation.start();

 }//end main

//--
/**
 * The purpose of this method is to begin the program by
 * creating and initializing the Channel and Time Period
 * matrix.
 *
 */

 public void start(){

 String fileName = "";
 String filePrefix = "";
 String fileOrder = "";
 String fileExtension = ".txt";
 String scheduleAlgorithm = "";
 int testCountDisplay = 1;

 90

 int numberDynamicChannels = 0;

 //create 2 dimensional array to assign data in a
 //matrix of channels and time periods
 String [][] ChannelTimePeriodMatrix;
 ChannelTimePeriodMatrix =
 new String [CHANNELS][TIMEPERIODS];

 //create 2 dimensional array to backup original
 //matrix for use in different scheduling
 //algorithms
 String [][] ChannelTimePeriodMatrixOriginal;
 ChannelTimePeriodMatrixOriginal =
 new String [CHANNELS][TIMEPERIODS];

 //initialize all values in array to null
 initializeChannelTimePeriodMatrix(
 ChannelTimePeriodMatrix);

 initializeChannelTimePeriodMatrix(
 ChannelTimePeriodMatrixOriginal);

 //create 2 dimensional array
 //assign fixed and dynamic channels in row [0]
 //empty in row [1] but left for future changes
 String [][] assignedChannel;
 assignedChannel =
 new String [CHANNELS][SETTINGS];

 //initialize all values in array to null
 initializeAssignedChannel(assignedChannel);

 //create a vector to store the original
 //transfer time of a data block to make a
 //comparison when the matrix is modified. For
 //now the size is set to TIMEPERIODS; later
 //this should be reduced to the number of
 //data block prefixes for efficiency
 int [] originalTransferTime;
 originalTransferTime =
 new int [TIMEPERIODS*CHANNELS];

 //initialize all values in array to zero
 initializeOriginalTransferTime(
 originalTransferTime);

 //create the set of prefix identifiers for a
 //block of data
 String [] prefixIDs =
 {"a","b","c","d","e","f","g","h","i","j","k",
 "l","m","n","o","p","q","r","s","t","u","v",
 "x","y","z","A","B","C","D","E","F","G","H",
 "I","J","K","L","M","N","O","P","Q","R","S",
 "T","U","V","X","Y","Z","aa","bb","cc","dd",

 91

 "ee","ff","gg","hh","ii","jj","kk","ll","mm",
 "nn","oo","pp","qq","rr","ss","tt","uu","vv",
 "ww","xx","yy","zz","AA","BB","CC","DD","EE",
 "FF","GG","HH","II","JJ","KK","LL","MM","NN",
 "OO","PP","QQ","RR","SS","TT","UU","VV","WW",
 "XX","YY","ZZ","ab","ac","ad","ae","af","ag",
 "ah","ai","aj","ak","al","am","an","ao","ap",
 "aq","ar","as","at","au","av","aw","ax","ay",
 "az","bb","aaa","bbb","ccc","ddd","eee",
 "fff","ggg","hhh","iii","jjj","kkk","lll",
 "mmm","nnn","ooo","ppp","TTT","UUU","VVV",
 "WWW","XXX","YYY","ZZZ"};

 //ask user input for either the program's set
 //values or randomly generate some number
 //(default to "YES" for random)
 boolean random = true;
 random = userGeneratesRandomNumbers(random);

 //ask user input for append or overwrite
 //existing file
 //(default to "YES" for append)
 boolean append = true;
 append = userInputAppendFile(append);

 //ask user input for type of scheduling
 //algorithm to run
 //(default to first schedule algorithm listed)
 int selection = 0;
 selection =
 userInputSchedulingAlgorithm(selection);

 //ask user input for number of tests to run
 //(default to 1)
 int numberOfTest = 0;
 numberOfTest =
 userInputNumberOfTests(numberOfTest);

 //ask user input for value of RTT
 //(default to 1)
 int valueOfRTT = 0;
// valueOfRTT = userInputValueOfRTT(valueOfRTT);
 valueOfRTT = 1;

 //ask user input for value of T
 //(default to 1)
 int valueOfT = 0;
// valueOfT = userInputValueOfT(valueOfT);
 valueOfT = 1;

 switch(selection){

 case 0:

 92

 System.exit(0);
 break;

 case 1:

 while(numberOfTest != 0){

 //First Come First Serve
 scheduleAlgorithm =
 "FirstComeFirstServe";

 //create a name for an output file
 filePrefix =
 "CA-FirstComeFirstServe";
 fileOrder = "BEFORE";

 int ratioT = 1;

 //run before any dynamic channels
 //are used
 runBeforeTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 prefixIDs,
 originalTransferTime,
 random,
 append,
 scheduleAlgorithm,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 numberDynamicChannels = 1;

 while((numberDynamicChannels)<
 (CHANNELS)){

 //run with dynamic channels
 fileOrder = "AFTER";

 ratioT =

ratioOfT(numberDynamicChannels);

 runTest(
 ChannelTimePeriodMatrix,

 93

ChannelTimePeriodMatrixOriginal,

 assignedChannel,
 originalTransferTime,
 append,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 scheduleAlgorithm,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 //change the number of

dynamic
 //channels
 numberDynamicChannels =

changeNumberDynamicChannels(

numberDynamicChannels);
 }

 numberDynamicChannels = 0;

 //initialize values for another
 //test
 initializeMatrixForAnotherTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime);

 testCountDisplay =
 testCountDisplay +1;

 numberOfTest = numberOfTest -1;

 }

 break;

 case 2:

 while(numberOfTest != 0){

 //Fair Distribution
 scheduleAlgorithm =
 "FairDistribution";

 //create a name for an output file
 filePrefix =

 94

 "CA-Fair Distribution";
 fileOrder = "BEFORE";

 int ratioT = 1;

 //run before any dynamic channels
 //are used
 runBeforeTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 prefixIDs,
 originalTransferTime,
 random,
 append,
 scheduleAlgorithm,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 numberDynamicChannels = 1;

 while((numberDynamicChannels)<
 (CHANNELS)){

 //run with dynamic channels
 fileOrder = "AFTER";

 ratioT =

ratioOfT(numberDynamicChannels);

 runTest(
 ChannelTimePeriodMatrix,

ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime,
 append,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 scheduleAlgorithm,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 95

 //change the number of

dynamic
 //channels
 numberDynamicChannels =

changeNumberDynamicChannels(

numberDynamicChannels);
 }

 numberDynamicChannels = 0;

 //initalize values for another test
 initializeMatrixForAnotherTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime);

 testCountDisplay =
 testCountDisplay +1;

 numberOfTest = numberOfTest -1;

 }

 break;

 case 3:

 while(numberOfTest != 0){

 //both scheduleAlgorithms
 scheduleAlgorithm =
 "both scheduling algorithm";

 //create a name for an output file
 filePrefix = "CA-bothScenarios";
 fileOrder = "BEFORE";

 int ratioT = 1;

 //run before any dynamic channels
 //are used
 runBeforeTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 prefixIDs,
 originalTransferTime,
 random,
 append,
 scheduleAlgorithm,
 numberDynamicChannels,

 96

 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 numberDynamicChannels = 1;

 //run with dynamic channels
 fileOrder = "AFTER";

 while((numberDynamicChannels)<
 (CHANNELS)){

 //First Come First Serve
 scheduleAlgorithm =
 "FirstComeFirstServe";

 ratioT =

ratioOfT(numberDynamicChannels);

 runTest(
 ChannelTimePeriodMatrix,

ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime,
 append,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 scheduleAlgorithm,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 //change the number of dynamic
 //channels
 numberDynamicChannels =

changeNumberDynamicChannels(

numberDynamicChannels);
 }

 numberDynamicChannels = 1;

 while((numberDynamicChannels)<

 97

 (CHANNELS)){

 //Fair Distribution
 scheduleAlgorithm =
 "FairDistribution";

 ratioT =

ratioOfT(numberDynamicChannels);

 runTest(
 ChannelTimePeriodMatrix,

ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime,
 append,
 numberDynamicChannels,
 fileName,
 filePrefix,
 fileOrder,
 fileExtension,
 scheduleAlgorithm,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 //change the number of

dynamic
 //channels
 numberDynamicChannels =

changeNumberDynamicChannels(

numberDynamicChannels);

 }

 numberDynamicChannels = 0;

 //initialize values for another
 //test
 initializeMatrixForAnotherTest(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal,
 assignedChannel,
 originalTransferTime);

 testCountDisplay =
 testCountDisplay +1;

 numberOfTest = numberOfTest -1;

 }

 98

 break;

 default:

 System.exit(0);
 break;
 }

 System.exit(0);

}//end start

//---
/**
 * The purpose of this method is to ask the user
 * whether to use random or fixed numbers.
 * Input is through a GUI.
 *
 * @param random
 *
 * @return random
 */

private boolean userGeneratesRandomNumbers(
 boolean random){

 int response;

 response = JOptionPane.showConfirmDialog(null,
 "want RANDOM values generated");

 switch(response){

 //use random numbers
 case 0:
 random = true;
 break;

 //use numbers already set
 case 1:
 random = false;
 break;

 //user enters CANCEL
 case 2:
 System.exit(0);
 break;

 default:
 System.exit(0);
 break;
 }

 99

 return random;

}//end userGeneratesRandomNumbers

//---
/**
 * The purpose of this method is to ask the user
 * whether the output created should be appended to
 * an existing file or overwrite the file (if one
 * exists).
 * Input is through a GUI.
 *
 * @param append
 *
 * @return append
 */

private boolean userInputAppendFile(
 boolean append){

 int response;

 response = JOptionPane.showConfirmDialog(null,
 "want to APPEND output to file");

 switch(response){

 //append to existing file
 case 0:
 append = true;
 break;

 //overwrite existing file
 case 1:
 append = false;
 break;

 //user enters CANCEL
 case 2:
 System.exit(0);
 break;

 default:
 System.exit(0);
 break;
 }

 return append;

}//end userInputAppendFile

//---
/**
 * The purpose of this method is to ask the user

 100

 * which scheduling algorithm to run. Additional
 * algorithms can be added in the future.
 * Input is through a GUI.
 *
 * @param selection
 *
 * @return selection
 */

private int userInputSchedulingAlgorithm(
 int selection){

 String [] choices = {"First Come First Serve",
 "Fair Distribution",
 "both"};

 String input =
 (String)JOptionPane.showInputDialog(null,
 "choose scheduling algorithm",
 "Type of scheduling algorithm",
 JOptionPane.QUESTION_MESSAGE,null,
 choices,choices[0]);

 if (input == "First Come First Serve"){

 selection = 1;
 }

 if (input == "Fair Distribution"){

 selection = 2;
 }

 if (input == "both"){

 selection = 3;
 }

 return selection;

}//end userInputSchedulingAlgorithm

//---
/**
 * The purpose of this method is to calculate the
 * ratio of fixed channels to dynamic channels.
 * For example,
 * 5:5 is 1 (0% dynamic channels)
 * 5:6 is 1.2 (16% dynamic channels)
 * 5:7 is 1.4 (28% dynamic channels)
 * 5:8 is 1.6 (38% dynamic channels)
 * 5:9 is 1.8 (44% dynamic channels)
 * 5:10 is 2 (50% dynamic channels)

 101

 * 5:15 is 3 (66% dynamic channels)
 * 5:20 is 4 (75% dynamic channels)
 *
 * @param numberDynamicChannels
 *
 * @return ratioOfT
 */

private int ratioOfT(int numberDynamicChannels){

 double ratioT = 0;

 ratioT =
 (numberDynamicChannels + FIXCHANNELS)/
 FIXCHANNELS;

 return (int)ratioT;

}//end ratioOfT

//---
/**
 * The purpose of this method is to ask the user
 * how many tests to run.
 * Input is through a GUI.
 *
 * @param numberOfTests
 *
 * @return numberOfTests
 */

private int userInputNumberOfTests(
 int numberOfTests){

 String input = JOptionPane.showInputDialog
 ("number of tests to run:");

 try {

 int value = Integer.parseInt(input);

 if (value == 0){

 numberOfTests = 0;
 }

 if (value >= 1){

 numberOfTests = value;
 }
 }

 //catches Number Format Exception error
 //conditions
 catch (NumberFormatException e){

 102

 System.err.println ("not a valid number");
 System.exit(-1);

 }//end catch

 return numberOfTests;

}//end userInputNumberOfTests

//---
/**
 * The purpose of this method is to ask the user
 * the RTT value
 * Input is through a GUI.
 *
 * @param valueOfRTT
 *
 * @return valueOfRTT
 */

private int userInputValueOfRTT(int valueOfRTT){

 String input = JOptionPane.showInputDialog
 ("value of RTT (1 to 999):");

 try {

 int value = Integer.parseInt(input);

 if (value == 0){

 valueOfRTT = 0;
 }

 if (value > 999){

 valueOfRTT = 1;
 }
 else {
 valueOfRTT = value;
 }
 }

 //catches Number Format Exception error
 //conditions
 catch (NumberFormatException e){

 System.err.println ("not a valid number");
 System.exit(-1);

 }//end catch

 return valueOfRTT;

 103

}//end userInputValueOfRTT

//---
/**
 * The purpose of this method is to ask the user
 * the T value
 * Input is through a GUI.
 *
 * @param valueOfT
 *
 * @return valueOfT
 */

private int userInputValueOfT(int valueOfT){

 String input = JOptionPane.showInputDialog
 ("value of T (1 to 999):");

 try {

 int value = Integer.parseInt(input);

 if (value == 0){

 valueOfT = 0;
 }

 if (value > 999){

 valueOfT = 1;
 }
 else {
 valueOfT = value;
 }
 }

 //catches Number Format Exception error
 //conditions
 catch (NumberFormatException e){

 System.err.println ("not a valid number");
 System.exit(-1);

 }//end catch

 return valueOfT;

}//end userInputValueOfT

//---
/**
 * The purpose of this method is to change the
 * number of dynamic channels. Currently, the
 * program uses 1, 2, 3, 4, 5, 10, and 15.
 *

 104

 * @param numberDynamicChannels
 *
 * @return numberDynamicChannels
 */

private int changeNumberDynamicChannels(
 int numberDynamicChannels){

 //dynamic channels of 1,2,3,4
 if (numberDynamicChannels<5){
 numberDynamicChannels =
 numberDynamicChannels +1;
 }
 //dynamic channels of 5,10,15
 else {
 numberDynamicChannels =
 numberDynamicChannels +5;
 }

 return numberDynamicChannels;

}//end changeNumberDynamicChannels

//---
/**
 * The purpose of this method is to create a name
 * for the output file
 *
 * @param filePrefix
 * @param fileOrder
 * @param fileExtension
 * @param testCountDisplay
 *
 * @return fileName
 */

private String createFileName(
 String filePrefix,
 String fileOrder,
 String fileExtension,
 int testCountDisplay){

 String fileName =
 filePrefix +
 // fileOrder +
 // "_" +
 // Integer.toString(testCountDisplay)+
 // "_" +
 fileExtension;

 return fileName;

}//end createFileName

 105

//---
/**
 * The purpose of this method is to initialize the
 * original transfer time matrix to zero values
 *
 * @param originalTransferTime
 */

private void initializeOriginalTransferTime(
 int [] originalTransferTime){

 for (int a = 0; a<TIMEPERIODS; a++){
 originalTransferTime[a]=0;
 }

}//end initializeOriginalTransferTime

//---
/**
 * The purpose of this method is to initialize the
 * Channel and Time Period matrix to null values
 *
 * @param ChannelTimePeriodMatrix
 */

private void initializeChannelTimePeriodMatrix(
 String [][] ChannelTimePeriodMatrix){

 for(int a = 0; a<CHANNELS; a++){
 for(int b = 0; b<TIMEPERIODS; b++){
 ChannelTimePeriodMatrix[a][b] = null;
 }
 }

}//end initializeChannelTimePeriodMatrix

//---
/**
 * The purpose of this method is to set some values
 * for representing data traffic in the Channel and
 * Time Period matrix. In addition, this methods
 * helps in troubleshooting the program.
 *
 * @param ChannelTimePeriodMatrix
 */

private void setSomeFixValuesChannelTimePeriodMatrix(
 String [][] ChannelTimePeriodMatrix){

 int dataSets = 0;

 106

 int channel = 0;
 int startTimePeriod = 0;
 String name = null;

 //7 data sets to send on Channel 1 beginning at
 //time period 0
 dataSets = 7;
 channel = 1;
 startTimePeriod = 0;
 name = "a";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //5 data sets to send on Channel 2 beginning at
 //time period 1
 dataSets = 5;
 channel = 2;
 startTimePeriod = 1;
 name = "b";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //2 data sets to send on Channel 3 beginning at
 //time period 5
 dataSets = 2;
 channel = 3;
 startTimePeriod = 5;
 name = "d";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //3 data sets to send on Channel 4 beginning at
 //time period 2
 dataSets = 3;
 channel = 4;
 startTimePeriod = 3;
 name = "e";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //3 data sets to send on Channel 4 beginning at
 //time period 0

 107

 dataSets = 3;
 channel = 4;
 startTimePeriod = 0;
 name = "f";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //4 data sets to send on Channel 3 beginning at
 //time period 0
 dataSets = 4;
 channel = 3;
 startTimePeriod = 0;
 name = "h";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 //5 data sets to send on Channel 5 beginning at
 //time period 1
 dataSets = 5;
 channel = 5;
 startTimePeriod = 1;
 name = "i";
 setInitialData(ChannelTimePeriodMatrix,
 dataSets,
 channel,
 startTimePeriod,
 name);

 }//end setSomeValueChannelTimePeriodMatrix

//---
/**
 * The purpose of this method is to set some random
 * values for representing data traffic in the
 * Channel and Time Period matrix
 *
 * @param ChannelTimePeriodMatrix
 * @param prefixIDs
 */

private void
 setSomeRandomValuesChannelTimePeriodMatrix(
 String [][] ChannelTimePeriodMatrix,
 String [] prefixIDs){

 String name = null;
 double myPercent = 0;
 boolean exitCheck = false;
 boolean needToGenerateID = true;

 108

 double targetUtilization = .4;
 int maximumMessageGap = 2;
 int minimumMessageSize = 5;

 Vector usedPrefixIDs = new Vector(1,1);

 Random percentCapacity = new Random();

 int countOfFreeCells = TIMEPERIODS;

 double threshold =
 ((double)countOfFreeCells/(double)TIMEPERIODS);

 for(int a = 0; a<FIXCHANNELS; a++){

 while(threshold>targetUtilization){

 countOfFreeCells = 0;

 //count from the end to the beginning
 for(int z = TIMEPERIODS-1; z>1; z--){

 if (ChannelTimePeriodMatrix [a][z] ==
 null){

 countOfFreeCells =
 countOfFreeCells +1;
 }

 else {
 z = 0;
 }
 }

 myPercent = percentCapacity.nextDouble();
 myPercent =
 Math.round(myPercent*countOfFreeCells);

 //get an unused prefix id
 while(!exitCheck){

 int stopChecking = 0;

 if (needToGenerateID){

 name =
 prefixIDs[(int)
 (prefixIDs.length*
 Math.random())];

 needToGenerateID = false;
 }

 for(int b=0; b<usedPrefixIDs.size();

 109

 b++){

 if(usedPrefixIDs.get(b) == name){

 needToGenerateID = true;
 stopChecking = stopChecking

+1;

 }
 }

 if (stopChecking >1000){

 boolean response = false;
 JOptionPane.showConfirmDialog(
 null,
 "WARNING! Exhausted Prefix

List."
 +" Do you want to

continue?");

 if (response==false){

 System.exit(0);
 }
 else {

 response = true;
 }
 }

 if(!needToGenerateID){
 usedPrefixIDs.add(name);
 needToGenerateID = false;
 exitCheck = true;
 }
 }

 exitCheck = false;

 //generate start point
 int lastPointtoStart =
 (int) (countOfFreeCells - myPercent);

 //favor towards the front
 while (lastPointtoStart >
 maximumMessageGap){
 Random lastpoint = new Random();
 int myLast = 0;
 myLast =
 lastpoint.nextInt(
 lastPointtoStart);
 lastPointtoStart = myLast;
 }

 110

 Random startpoint = new Random();
 int myStart = 0;
 myStart =
 startpoint.nextInt(
 lastPointtoStart+1);
 myStart =
 myStart+(TIMEPERIODS-countOfFreeCells);

 //favor minimum block size
 Random datalength = new Random();
 int myDataLength = 0;
 int maxAllowed = 0;
 maxAllowed = (int)(myPercent);

 if(maxAllowed >minimumMessageSize){

 while(myDataLength<
 minimumMessageSize){

 myDataLength =
 datalength.nextInt(
 maxAllowed+1);
 }

 }
 else {

 myDataLength =
 datalength.nextInt(maxAllowed+1);
 }

 //populate matrix
 for(int c=0; c<myDataLength; c++){
 ChannelTimePeriodMatrix[a]
 [myStart+c]=name+c;
 }

 countOfFreeCells=0;

 for(int z = TIMEPERIODS-1; z>1; z--){

 if (ChannelTimePeriodMatrix [a][z] ==
 null){
 countOfFreeCells =
 countOfFreeCells +1;
 }

 else {

 z = 0;
 }
 }

 threshold =

 111

 ((double)countOfFreeCells/
 (double)TIMEPERIODS);

 myPercent = 0;

 }//end while

 countOfFreeCells = TIMEPERIODS;

 threshold = ((double)countOfFreeCells/
 (double)TIMEPERIODS);

 myPercent = 0;

 }// end for

}//end setSomeRandomValuesChannelTimePeriodMatrix

//---
/**
 * The purpose of this method is to initialize the
 * Assigned Channel matrix to null values
 *
 * @param assignedChannel
 */

private void initializeAssignedChannel(
 String [][] assignedChannel){

 for(int a = 0; a<CHANNELS; a++){
 for(int b = 0; b<SETTINGS; b++){
 assignedChannel[a][b] = null;
 }
 }

 }//end initializeAssignedChannel

//---
/**
 * The purpose of this method is to set the
 * contents of the channel assignment (fixed or
 * dynamic). All channels are initially set to null
 * then overwritten with the type of channel
 *
 * @param assignedChannel
 * @param numberToAssign
 * @param typeOfChannel
 */

private void setAssignedChannel(
 String [][] assignedChannel,
 double numberToAssign,
 String typeOfChannel){

 112

 double counter = numberToAssign;

 for(int a = 0; a<CHANNELS; a++){

 if(assignedChannel[a][0] == null){
 assignedChannel[a][0] = typeOfChannel;
 counter = counter -1;
 }

 if (counter == 0){
 a = CHANNELS;
 }
 }

 }//end setAssignedChannel

//---
/**
 * The purpose of this method is to set initial
 * data
 *
 * @param ChannelTimePeriodMatrix
 * @param dataSets
 * @param channel
 * @param startTimePeriod
 * @param name
 */

private void setInitialData(
 String [][] ChannelTimePeriodMatrix,
 int dataSets,
 int channel,
 int startTimePeriod,
 String name){

 for(int a = 0; a<dataSets; a++){
 ChannelTimePeriodMatrix[channel-1]
 [a+startTimePeriod] = name+a;
 }

}//end setInitialData

//---
/**
 * The purpose of this method is to copy the intial
 * values from the Channel and TimePeriod matrix to
 * an identical array so the values can be restored
 * in future tests
 *
 * @param ChannelTimePeriodMatrix
 * @param ChannelTimePeriodMatrixOriginal
 */

private void copyOriginalMatrix(
 String [][] ChannelTimePeriodMatrix,

 113

 String [][] ChannelTimePeriodMatrixOriginal){

 for(int a = 0; a<CHANNELS; a++){

 for(int b = 0; b<TIMEPERIODS; b++){
 ChannelTimePeriodMatrixOriginal[a][b] =
 ChannelTimePeriodMatrix[a][b];
 }
 }

 }//end copyOriginalMatrix

//---
/**
 * The purpose of this method is to restore the
 * original values from the backup matrix
 *
 * @param ChannelTimePeriodMatrix
 * @param ChannelTimePeriodMatrixOriginal
 */

private void restoreOriginalMatrix(
 String [][] ChannelTimePeriodMatrix,
 String [][] ChannelTimePeriodMatrixOriginal){

 for(int a = 0; a<CHANNELS; a++){
 for(int b = 0; b<TIMEPERIODS; b++){
 ChannelTimePeriodMatrix[a][b] =
 ChannelTimePeriodMatrixOriginal[a][b];
 }
 }

}//end restoreOriginalMatrix

//---
/**
 * The purpose of this method is to initialize the
 * matrix for another test using the same original
 * data
 *
 * @param ChannelTimePeriodMatrix
 * @param ChannelTimePeriodMatrixOriginal
 * @param assignedChannel
 * @param originalTransferTime
 */

private void initializeMatrixForAnotherTest(
 String [][] ChannelTimePeriodMatrix,
 String [][] ChannelTimePeriodMatrixOriginal,
 String [][] assignedChannel,
 int [] originalTransferTime){

 //initialize all values in array to null

 114

 initializeChannelTimePeriodMatrix(
 ChannelTimePeriodMatrix);

 initializeChannelTimePeriodMatrix(
 ChannelTimePeriodMatrixOriginal);

 //initialize all values in array to null
 initializeAssignedChannel(assignedChannel);

 //initialize all values in array to zero
 initializeOriginalTransferTime(
 originalTransferTime);

}//end initializeMatrixForAnotherTest

//---
/**
 * The purpose of this method is to run before any
 * algorithm begins.
 *
 * @param ChannelTimePeriodMatrix
 * @param ChannelTimePeriodMatrixOriginal
 * @param assignedChannel
 * @param prefixIDs
 * @param originalTransferTime
 * @param random
 * @param append
 * @param scheduleAlgorithm
 * @param numberDynamicChannels
 * @param fileName
 * @param filePrefix
 * @param fileOrder
 * @param fileExtension
 * @param ratioT
 * @param valueOfRTT
 * @param valueOfT
 * @param testCountDisplay
 */

private void runBeforeTest(
 String [][] ChannelTimePeriodMatrix,
 String [][] ChannelTimePeriodMatrixOriginal,
 String [][] assignedChannel,
 String [] prefixIDs,
 int [] originalTransferTime,
 boolean random,
 boolean append,
 String scheduleAlgorithm,
 int numberDynamicChannels,
 String fileName,
 String filePrefix,
 String fileOrder,
 String fileExtension,
 int ratioT,

 115

 int valueOfRTT,
 int valueOfT,
 int testCountDisplay){

 //create a file name
 fileName = createFileName(filePrefix,
 fileOrder,
 fileExtension,
 testCountDisplay);

 //set the number of fixed channels
 setAssignedChannel(assignedChannel,
 FIXCHANNELS,
 FIXCHANNELID);

 if(random){
 setSomeRandomValuesChannelTimePeriodMatrix(
 ChannelTimePeriodMatrix,
 prefixIDs);
 }
 else {
 setSomeFixValuesChannelTimePeriodMatrix(
 ChannelTimePeriodMatrix);
 }

 DisplayChannel myBeforeTestOutput;
 myBeforeTestOutput = new DisplayChannel();

 myBeforeTestOutput.displayMatrix(
 ChannelTimePeriodMatrix,
 assignedChannel,
 originalTransferTime,
 scheduleAlgorithm,
 numberDynamicChannels,
 fileName,
 fileOrder,
 append,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 //initialize all values in array to null
 initializeAssignedChannel(assignedChannel);

 //copy original data
 copyOriginalMatrix(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal);

 }//end runBeforeTest

//---
/**

 116

 * The purpose of this method is to run the test.
 *
 * @param ChannelTimePeriodMatrix
 * @param ChannelTimePeriodMatrixOriginal
 * @param assignedChannel
 * @param originalTransferTime
 * @param append
 * @param fileName
 * @param filePrefix
 * @param fileOrder
 * @param fileExtension
 * @param scheduleAlgorithm
 * @param ratioT
 * @param valueOfRTT
 * @param valueOfT
 * @param testCountDisplay
 */

private void runTest(
 String [][] ChannelTimePeriodMatrix,
 String [][] ChannelTimePeriodMatrixOriginal,
 String [][] assignedChannel,
 int [] originalTransferTime,
 boolean append,
 int numberDynamicChannels,
 String fileName,
 String filePrefix,
 String fileOrder,
 String fileExtension,
 String scheduleAlgorithm,
 int ratioT,
 int valueOfRTT,
 int valueOfT,
 int testCountDisplay){

 //create a file name for channel allocation
 fileName = createFileName(filePrefix,
 fileOrder,
 fileExtension,
 testCountDisplay);

 //set the number of fixed channels
 setAssignedChannel(assignedChannel,
 FIXCHANNELS,
 FIXCHANNELID);

 //set the number of dynamic channels
 setAssignedChannel(assignedChannel,
 numberDynamicChannels,
 DYNCHANNELID);

 if (scheduleAlgorithm == "FairDistribution"){
 FairDistribution myTest;
 myTest = new FairDistribution();

 117

 myTest.fairDistribution(
 ChannelTimePeriodMatrix,
 assignedChannel);
 }

 if (scheduleAlgorithm == "FirstComeFirstServe"){
 FirstComeFirstServe myTest;
 myTest = new FirstComeFirstServe();
 myTest.firstComeFirstServe(
 ChannelTimePeriodMatrix,
 assignedChannel);
 }

 DisplayChannel myTestOutput;
 myTestOutput = new DisplayChannel();

 //display output
 myTestOutput.displayMatrix(
 ChannelTimePeriodMatrix,
 assignedChannel,
 originalTransferTime,
 scheduleAlgorithm,
 numberDynamicChannels,
 fileName,
 fileOrder,
 append,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 //initialize all values in array to null
 initializeAssignedChannel(assignedChannel);

 //initialize all values in array to null
 initializeChannelTimePeriodMatrix(
 ChannelTimePeriodMatrix);

 //restore original data
 restoreOriginalMatrix(
 ChannelTimePeriodMatrix,
 ChannelTimePeriodMatrixOriginal);

 }//end runTest

//---

}//end class

 118

B. PROGRAM – JAVA CLASS: DISPLAY CHANNEL

/**
 * Filename: DisplayChannel.java
 * Date: 23 May 2003
 * Revision: 5 September 2003
 * Author: Andy Kaminsky
 * Thesis: Channel Allocation
 * Compiler: Java2 SDK 1.4
 */

/**
 * The purpose of this class is to display the
 * matrix of channels and time periods.
 *
 * @author: Andy Kaminsky
 */

/**
 * Assumption(s):
 * (1) Output screen in system window
 * (2) Correct alignment is limited to 3 digits on
 * the time periods
 * (3) Cell size is fixed to 6 spaces
 * (4) Correct alignment for channel listing is
 * limited to 2 digits
 * (5) Correct alignment for bandwidth per channel
 * listing is limited to 3 digits
 */

/**
 * Note: There is a problem writing the -BEFORE
 * file when the user selects 'NO' for
 * appending. However, selecting 'YES'
 * creates the proper output.
 */

import java.util.*;
import java.io.*;

public class DisplayChannel
 extends ChannelAllocation {

 public DisplayChannel(){}

//--
/**
 * The purpose of this method is to display the main

 119

 * Channel and Time Period matrix both to the screen
 * and text file.
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param originalTransferTime
 * @param scenario
 * @param numberDynamicChannels
 * @param fileName
 * @param fileOrder
 * @param append
 * @param ratioT
 * @param valueOfRTT
 * @param valueOfT
 * @param testCountDisplay
 */

protected void displayMatrix(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 int [] originalTransferTime,
 String scheduleAlgorithm,
 int numberDynamicChannels,
 String fileName,
 String fileOrder,
 boolean append,
 int ratioT,
 int valueOfRTT,
 int valueOfT,
 int testCountDisplay){

 FileOutputStream fout;
 boolean printAssignedChannel = false;
 double displayBreaks = 0;
 double countCurrentBreaks = 0;
 double desiredDisplayBreaks = TIMEPERIODS;
 double overallChannelUtilization = 0;
 int beginFrom = 0;
 int endAt = 0;
 int leadingSpaces = 0;
 int trailingSpaces = 0;
 int cellSize = 6;
 int cellVariableSize = 0;

 try{

 fout =
 new FileOutputStream (fileName,append);

 //print heading
 System.out.print(fileName+" TEST #"+
 testCountDisplay+
 "\n"+"\n");
 new PrintStream(fout).println(fileName+

 120

 " TEST #"+
 testCountDisplay);
 System.out.println(scheduleAlgorithm);
 new PrintStream(fout).println(
 scheduleAlgorithm);
 new PrintStream(fout).println();
 new PrintStream(fout).println();

 displayBreaks =
 calculateDisplayBreaks(
 desiredDisplayBreaks);

 while(displayBreaks != 0){

 //print time period heading
 System.out.print(
 " time period |");
 new PrintStream(fout).print(
 " time period |");

 beginFrom =
 calculateBeginFrom(
 countCurrentBreaks,
 desiredDisplayBreaks);

 endAt =
 calculateEndAt(
 countCurrentBreaks,
 desiredDisplayBreaks);

 if(endAt == TIMEPERIODS){

 displayBreaks = 0;

 }

 //print time period numbers
 for(double a = (beginFrom); a<(endAt);
 a++){

 leadingSpaces =
 calculateLeadingSpacesINT(
 (int)a,cellSize);

 trailingSpaces =
 calculateTrailingSpacesINT(
 (int)a,cellSize,leadingSpaces);

 for(int b = 0; b<leadingSpaces;
 b++){
 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }

 121

 System.out.print((int)(a));
 new PrintStream(fout).print(
 (int)(a));

 for(int c = -1; c<trailingSpaces;
 c++){
 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }

 System.out.print("|");
 new PrintStream(fout).print("|");
 }

 //print horizontal line
 new PrintStream(fout).println();
 System.out.print("\n---------------");
 new PrintStream(fout).print(
 "---------------");

 for(int d = 0; d<(endAt-beginFrom); d++){
 System.out.print("---------");
 new PrintStream(fout).print(
 "---------");
 }

 System.out.println();
 new PrintStream(fout).println();

 //print channel listing
 for(int e = 0; e<CHANNELS; e++){
 int tempChannel = e;

 if (assignedChannel[e][0] != null){
 printAssignedChannel = true;
 }

 while(printAssignedChannel){

 if (e<9 && e<CHANNELS){
 System.out.print(
 assignedChannel[e][0]+
 " channel "+(e+1)+
 " |");
 new PrintStream(fout).print(
 assignedChannel[e][0]+
 " channel "+(e+1)+
 " |");
 }

 else{
 System.out.print(
 assignedChannel[e][0]+

 122

 " channel "+(e+1)+" |");
 new PrintStream(fout).print(
 assignedChannel[e][0]+
 " channel "+(e+1)+" |");
 }

 // data in matrix
 for(double f = (beginFrom);
 f<(endAt); f++){

 int g = (int)f;

 cellVariableSize =
 findCellVariableSize(
 ChannelTimePeriodMatrix,
 e,
 g,
 cellSize);

 leadingSpaces =
 calculateLeadingSpacesCHAR(
 cellVariableSize,
 cellSize);

 trailingSpaces =
 calculateTrailingSpacesCHAR(
 cellVariableSize,
 cellSize,
 leadingSpaces);

 //print empty cell in matrix
 if(ChannelTimePeriodMatrix[e][g] ==
 null){
 for(int h = 0;
 h<cellSize+1; h++){
 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }
 }

 //print non-empty cell in matrix
 else {

 //print leading spaces
 for(int i=0;
 i<leadingSpaces; i++){
 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }

 //print variable

 123

 System.out.print(
 ChannelTimePeriodMatrix
 [e][g]);
 new PrintStream(fout).print(
 ChannelTimePeriodMatrix
 [e][g]);

 //print trailing spaces
 for(int j=0;
 j<trailingSpaces; j++){
 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }
 }

 System.out.print("|");
 new PrintStream(fout).print("|");
 }

 System.out.println();
 new PrintStream(fout).println();

 printAssignedChannel = false;
 }

 }//end while

 //print horizontal line
 System.out.print("---------------");
 new PrintStream(fout).print(
 "---------------");

 for(int k = 0; k<(endAt-beginFrom); k++){
 System.out.print("---------");
 new PrintStream(fout).print("---------");
 }

 System.out.println();
 new PrintStream(fout).println();

 //channels used in each time period
 System.out.print("# channels used | ");
 new PrintStream(fout).print(
 "# channels used | ");

 for(double l = (beginFrom); l<(endAt); l++){
 int m = (int)l;
 int tempTimePeriod = m;
 double numberChannelsUsedPerTimePeriod =
 0;

 numberChannelsUsedPerTimePeriod =
 calculateNumberChannelsUsedPerTimePeriod(

 124

 ChannelTimePeriodMatrix,
 tempTimePeriod);

 //align if channels used is 1 digit (0-9)
 if(Math.round(
 numberChannelsUsedPerTimePeriod)<10){
 System.out.print(
 " "+Math.round(
 numberChannelsUsedPerTimePeriod)+
 " | ");
 new PrintStream(fout).print(
 " "+Math.round(
 numberChannelsUsedPerTimePeriod)+
 " | ");
 }

 //align if channels used is 2 digits (10-99)
 else {
 System.out.print(
 Math.round(
 numberChannelsUsedPerTimePeriod)+
 " | ");
 new PrintStream(fout).print(
 Math.round(
 numberChannelsUsedPerTimePeriod)+
 " | ");
 }
 }

 System.out.println();
 new PrintStream(fout).println();

 //bandwidth utilization
 System.out.print("bw utilization | ");
 new PrintStream(fout).print(
 "bw utilization | ");

 for(double lll = (beginFrom); lll<(endAt);
 lll++){
 int mmm = (int)lll;
 int tempTimePeriod = mmm;
 double numberChannelsUsedPerTimePeriod = 0;
 double numberChannelsAssigned = 0;
 double bandwidthUtilization = 0;

 numberChannelsUsedPerTimePeriod =
 calculateNumberChannelsUsedPerTimePeriod(
 ChannelTimePeriodMatrix,
 tempTimePeriod);

 numberChannelsAssigned =
 calculateNumberChannelsAssigned(
 assignedChannel);

 125

 bandwidthUtilization =
 calculateBandwidthUtilization(
 numberChannelsAssigned,
 numberChannelsUsedPerTimePeriod);

 //align if utilization is 1 digit (0%-9%)
 if(Math.round(bandwidthUtilization)<10){
 System.out.print(
 " "+Math.round(
 bandwidthUtilization)+"% ");
 new PrintStream(fout).print(
 " "+Math.round(
 bandwidthUtilization)+"% ");
 }

 //align if utilization is 2 digits (10%-99%)
 else {
 System.out.print(
 Math.round(
 bandwidthUtilization)+"% ");
 new PrintStream(fout).print(
 Math.round(
 bandwidthUtilization)+"% ");
 }
 //align if utilization is 3 digits (100%)
 if(Math.round(bandwidthUtilization)<99){
 System.out.print(" | ");
 new PrintStream(fout).print(" | ");
 }
 else {
 System.out.print("| ");
 new PrintStream(fout).print("| ");
 }

 }

 for(int n =0; n<2; n++){
 System.out.println();
 new PrintStream(fout).println();
 }

 //overall utilization
 overallChannelUtilization =
 calculateOverallUtilization(
 ChannelTimePeriodMatrix);
/*
 System.out.println(
 "overall utilization of all the "+
 "channels and time periods is "+
 overallChannelUtilization+"%\n");

 new PrintStream(fout).println(
 "overall utilization of "+

 126

 "all the channels and "+
 "time periods is "+
 overallChannelUtilization+"%");
 new PrintStream(fout).println(" ");
*/
 if(countCurrentBreaks == displayBreaks){
 displayBreaks = 0;
 }

 countCurrentBreaks = countCurrentBreaks+1;
 System.out.println();
 new PrintStream(fout).println();
 }

 //display delivery time
 DisplayDelivery myOutputDelivery;
 myOutputDelivery = new DisplayDelivery();

 myOutputDelivery.delivery(
 ChannelTimePeriodMatrix,
 assignedChannel,
 originalTransferTime,
 scheduleAlgorithm,
 numberDynamicChannels,
 fileName,
 fileOrder,
 desiredDisplayBreaks,
 cellSize,
 ratioT,
 valueOfRTT,
 valueOfT,
 testCountDisplay);

 for(int n =0; n<3; n++){
 System.out.println();
 new PrintStream(fout).println();
 }

 // Close the output stream
 fout.close();
 }

 // Catches any error conditions
 catch (IOException e){
 System.err.println (
 "unable to write to file");
 System.exit(-1);
 }//end catch

}//end displayChannelTimePeriodMatrix

//--
/**
 * The purpose of this method is to display the contents

 127

 * of the channel assignment (fixed or dynamic). This
 * helps in troubleshooting.
 *
 * @param assignedChannel
 *
 */

private void displayAssignedChannel(
 String [][] assignedChannel){

 for(int a = 0; a<CHANNELS; a++){
 System.out.println("Channel "+a+" is "+
 assignedChannel[a][0]);
 }

}//end displayAssignedChannel

//--
/**
 * The purpose of this method is to calculate current
 * channel utilization
 *
 * @param ChannelTimePeriodMatrix
 * @param tempChannel
 *
 * @return utilization
 */

private double calculateCurrentChannelUtilization(
 String [][] ChannelTimePeriodMatrix,
 int tempChannel){

 double utilization = 0;
 double timePeriodUsed = 0;

 for(int a = 0; a<TIMEPERIODS; a++){
 if(!(ChannelTimePeriodMatrix[tempChannel][a] ==
 null)){
 timePeriodUsed++;
 }
 }

 utilization = ((timePeriodUsed/TIMEPERIODS)*100);

 return utilization;

}//end calculateCurrentChannelUtilization

//--
/**
 * The purpose of this method is to calculate current
 * time period utilization
 *
 * @param ChannelTimePeriodMatrix
 * @param tempTimePeriod

 128

 *
 * @return utilization
 */

private double calculateCurrentTimePeriodUtilization(
 String [][] ChannelTimePeriodMatrix,
 int tempTimePeriod){

 double utilization = 0;
 double channelUsed = 0;

 for(int a = 0; a<CHANNELS; a++){
 if(!(ChannelTimePeriodMatrix[a][tempTimePeriod] ==
 null)){
 channelUsed++;
 }
 }

 utilization = ((channelUsed/CHANNELS)*100);

 return utilization;

 }//end calculateCurrentTimePeriodUtilization

//--
/**
 * The purpose of this method is to calculate overall
 * utilization. This also helps in checking that the
 * same value is returned in all the tests ran.
 *
 * @param ChannelTimePeriodMatrix
 *
 * @return utilization
 */

private double calculateOverallUtilization(
 String [][] ChannelTimePeriodMatrix){

 double utilization = 0;
 double timePeriodUsed = 0;

 for(int a = 0; a<TIMEPERIODS; a++){
 for(int b = 0; b<CHANNELS; b++){
 if(!(ChannelTimePeriodMatrix[b][a] ==
 null)){
 timePeriodUsed++;
 }
 }
 }

 utilization =
 (Math.round((timePeriodUsed/
 (TIMEPERIODS*CHANNELS))*100));

 return utilization;

 129

 }//end calculateOverallUtilization

//--
/**
 * The purpose of this method is to calculate the total
 * number of display breaks for the screen. This is
 * useful when all the time periods in the Channel Time
 * Period matrix cannot be properly displayed on a
 * particular screen.
 *
 * @param desiredDisplayBreaks
 *
 * @return displayBreaks
 */

private double calculateDisplayBreaks(
 double desiredDisplayBreaks){

 double displayBreaks = (int)desiredDisplayBreaks;
 displayBreaks = TIMEPERIODS/displayBreaks;

 return displayBreaks;

}//end calculateDisplayBreaks

//--
/**
 * The purpose of this method is to calculate where the
 * beginning of the matrix is for each display break.
 * For example, if the desired display break is 7 then
 * the beginFrom value will be 0 for the first display,
 * 7 for the next, 14 for the next, and so on.
 *
 * @param countCurrentBreaks
 * @param desiredDisplayBreaks
 *
 * @return beginFrom
 */

private int calculateBeginFrom(
 double countCurrentBreaks,
 double desiredDisplayBreaks){

 int beginFrom = 0;

 if((countCurrentBreaks*desiredDisplayBreaks)>
 TIMEPERIODS){

 beginFrom =
 ((int)countCurrentBreaks*
 (int)desiredDisplayBreaks)-
 (((int)countCurrentBreaks*
 (int)desiredDisplayBreaks)-
 TIMEPERIODS);

 130

 }

 else{

 beginFrom =
 (int)countCurrentBreaks
 *(int)desiredDisplayBreaks;
 }

 return beginFrom;

}//end calculateBeginFrom

//--
/**
 * The purpose of this method is to calculate where the
 * end of the matrix is for each display break. For
 * example, if the desired display break is 7 then the
 * endAt value will be 6 for the first display, 13 for
 * the next, 20 for the next, and so on.
 *
 * @param countCurrentBreaks
 * @param desiredDisplayBreaks
 *
 * @return endAt
 */

private int calculateEndAt(
 double countCurrentBreaks,
 double desiredDisplayBreaks){

 int endAt = 0;

 if((desiredDisplayBreaks*(countCurrentBreaks+1)
 >=TIMEPERIODS)){

 endAt = TIMEPERIODS;

 }

 else{
 endAt = ((int)desiredDisplayBreaks*
 ((int)countCurrentBreaks+1));
 }

 return endAt;

}//end calculateEndAt

//--
/**
 * The purpose of this method is to calculate the
 * number of leading spaces to align the variable in
 * the cell.
 *

 131

 * @param cellVariable
 * @param cellSize
 *
 * @return leadingSpaces
 */

private int calculateLeadingSpacesINT(
 int cellVariable,
 int cellSize){

 int digits = calculateDigits(cellVariable);
 int leadingSpaces = 0;
 int addTo = 0;

 leadingSpaces = cellSize - digits;

 if(leadingSpaces == 2){
 leadingSpaces = 3;
 }
 if(leadingSpaces == 4){
 leadingSpaces = 3;
 }
 if(leadingSpaces == 5){
 leadingSpaces = 2;
 }

 return leadingSpaces;

}//end calculateLeadingSpacesINT

//--
/**
 * The purpose of this method is to calculate the
 * number of trailing spaces to align the variable in
 * the cell.
 *
 * @param cellVariable
 * @param cellSize
 * @param leadingSpaces
 *
 * @return trailingSpaces
 */

private int calculateTrailingSpacesINT(
 int cellVariable,
 int cellSize,
 int leadingSpaces){

 int digits = calculateDigits(cellVariable);
 int trailingSpaces = 0;
 int addTo = 0;

 trailingSpaces = cellSize - digits - leadingSpaces;

 132

 return trailingSpaces;

}//end calculateTrailingSpacesINT

//--
/**
 * The purpose of this method is to calculate the
 * number of digits in a number.
 *
 * @param cellVariable
 *
 * @return digits
 */

private int calculateDigits(int cellVariable){

 int digits = 1;

 if(cellVariable>=10){
 digits = 2;
 if(cellVariable>=100){
 digits = 3;
 if(cellVariable>=1000){
 digits = 4;
 }
 }
 }

 return digits;

}//end calculateDigits

//--
/**
 * The purpose of this method is to calculate the
 * number of characters in the cell.
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param cellSize
 *
 * @return size
 */

private int findCellVariableSize(
 String[][]ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod,
 int cellSize){

 int size = 0;

 if (ChannelTimePeriodMatrix[currentChannel]
 [currentTimePeriod]!=null){

 133

 size =
 ChannelTimePeriodMatrix[currentChannel]
 [currentTimePeriod].length();
 }

 else {
 size = cellSize;}

 return size;

}//end findCellVariableSize

//--
/**
 * The purpose of this method is to calculate the
 * number of leading spaces to align the variable in
 * the cell.
 *
 * @param cellVariableSize
 * @param cellSize
 *
 * @return leadingSpaces
 */

private int calculateLeadingSpacesCHAR(
 int cellVariableSize,
 int cellSize){

 int leadingSpaces = cellSize - cellVariableSize;

 if(leadingSpaces==4){
 leadingSpaces=3;
 }
 if(leadingSpaces==3){
 leadingSpaces=3;
 }
 if(leadingSpaces==2){
 leadingSpaces=2;
 }
 if(leadingSpaces==1){
 leadingSpaces=2;
 }
 if(leadingSpaces==0){
 leadingSpaces=1;
 }

 return leadingSpaces;

 }//end calculateLeadingSpacesCHAR

//--
/**
 * The purpose of this method is to calculate the
 * number of trailing spaces to align the variable in

 134

 * the cell.
 *
 * @param cellVariableSize
 * @param cellSize
 * @param leadingSpaces
 *
 * @return trailingSpaces
 */

private int calculateTrailingSpacesCHAR(
 int cellVariableSize,
 int cellSize,
 int leadingSpaces){

 int trailingSpaces = cellSize - cellVariableSize -
 leadingSpaces +1;

 return trailingSpaces;

 }//end calculateTrailingSpacesCHAR

//--
/**
 * The purpose of this method is to calculate the
 * number of channels used during a time period
 *
 * @param ChannelTimePeriodMatrix
 * @param tempTimePeriod
 *
 * @return channelsUsed
 */

private double calculateNumberChannelsUsedPerTimePeriod(
 String [][] ChannelTimePeriodMatrix,
 int tempTimePeriod){

 double channelsUsed = 0;

 for(int a = 0; a<CHANNELS; a++){
 if(!(ChannelTimePeriodMatrix[a]
 [tempTimePeriod] == null)){
 channelsUsed++;
 }
 }

 return channelsUsed;

}//end calculateNumberChannelsUsedPerTimePeriod

//--
/**
 * The purpose of this method is to calculate the
 * number of channels assigned either as fixed or
 * dynamic
 *

 135

 * @param assignedChannel
 *
 * @return numberChannelsAssigned
 */

private double calculateNumberChannelsAssigned(
 String [][] assignedChannel){

 double numberChannelsAssigned = 0;

 for(int a = 0; a<CHANNELS; a++){

 if(assignedChannel[a][0] != null){
 numberChannelsAssigned =
 numberChannelsAssigned +1;
 }
 }

 return numberChannelsAssigned;

}//end calculateNumberChannelsAssigned

//--
/**
 * The purpose of this method is to calculate the
 * bandwidth utilization
 *
 * @param numberChannelsAssigned
 * @param numberChannelsUsedPerTimePeriod
 *
 * @return bandwidthUtilization
 */

private double calculateBandwidthUtilization(
 double numberChannelsAssigned,
 double numberChannelsUsedPerTimePeriod){

 double bandwidthUtilization =
 (numberChannelsUsedPerTimePeriod/
 numberChannelsAssigned)*100;

 return bandwidthUtilization;

}//end calculateBandwidthUtilization

//--

}//end class

 136

C. PROGRAM – JAVA CLASS: DISPLAY DELIVERY TIME

/**
 * Filename: DisplayThroughput.java
 * Date: 16 June 2003
 * Revision: 5 September 2003
 * Author: Andy Kaminsky
 * Thesis: Channel Allocation
 * Compiler: Java2 SDK 1.4
 */

/**
 * The purpose of this class is to calculate and
 * display the delivery time through the use of
 * dynamic channels.
 *
 * @author: Andy Kaminsky
 */

/**
 * Assumptions:
 * (1) The size of values in the array are around
 * 6 characters.
 * (2) For correction display of percentage the
 * prefixIDs are limited to three characters.
 */

import java.util.*;
import java.io.*;

public class DisplayDelivery
 extends DisplayChannel {

 public DisplayDelivery(){}

//--
/**
 * The purpose of this method is to calculate and
 * display the delivery time through the use of dynamic
 * channels.
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param originalTransferTime
 * @param scheduleAlgorithm
 * @param fileName
 * @param numberDynamicChannels
 * @param fileOrder

 137

 * @param desiredDisplayBreaks
 * @param cellSize
 * @param ratioT
 * @param valueOfRTT
 * @param valueOfT
 * @param testCountDisplay
 */

protected void delivery(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 int [] originalTransferTime,
 String scheduleAlgorithm,
 int numberDynamicChannels,
 String fileName,
 String fileOrder,
 double desiredDisplayBreaks,
 int cellSize,
 int ratioT,
 int valueOfRTT,
 int valueOfT,
 int testCountDisplay){

 String graphName = "CA-data-";
 String dataFileExport = "CA-dataExport.txt";
 char constructPrefix;
 int countIDs = 0;

 String graphFileName =
 dataFileName(fileName,graphName);

 //count dataID blocks
 String dataPrefix =
 (dataIdPrefix(ChannelTimePeriodMatrix));

 for(int a=0; a<dataPrefix.length(); a++){
 constructPrefix = dataPrefix.charAt(a);

 if(constructPrefix == '['){
 countIDs = countIDs+1;
 }
 }

 //create one dimensional array to store:
 // [0] data prefix identifier
 String [] delayDataID;
 delayDataID = new String [countIDs];

 //store data identifiers (prefix) into array
 storeDataIds(delayDataID,dataPrefix,countIDs);

 //create two dimensional array to store:
 // [0] data block size
 // [1] data block size of fixed
 // [2] data block size of dynamic

 138

 // [3] RTT
 // [4] T
 // [5] RTT+T
 int [][] delayDataNumber;
 delayDataNumber = new int [6][countIDs];

 //count data block size and store in array
 countStoreDataBlockSize(
 ChannelTimePeriodMatrix,
 delayDataID,
 delayDataNumber,
 countIDs);

 //count time periods taken to send (RTT)
 countStoreRTT(ChannelTimePeriodMatrix,
 delayDataID,
 delayDataNumber,
 countIDs,
 valueOfRTT);

 //calculate T
 calculateStoreT(delayDataNumber,
 countIDs,
 ratioT,
 valueOfT);

 //calculate delivery time (RTT+T)
 calculateDeliveryTime(
 delayDataNumber,
 countIDs,
 originalTransferTime,
 fileOrder);

 //display the time delivery matrix
 displayTimeDilveryMatrix(
 delayDataID,
 delayDataNumber,
 countIDs,
 fileName,
 valueOfRTT,
 valueOfT,
 scheduleAlgorithm,
 numberDynamicChannels,
 dataFileExport,
 fileOrder,
 testCountDisplay);

 /*
 //calculate and display delivery change
 calculateDisplayThroughputChange(
 delayDataID,
 delayDataNumber,
 originalTransferTime,
 countIDs,
 desiredDisplayBreaks,

 139

 cellSize,
 fileName,
 graphFileName);
 */

}//end delivery

//--
/**
 * The purpose of this method is to add a graph name
 * to the existing file name
 *
 * @param fileName,
 * @param graphName
 *
 * @return name
 */

private String dataFileName(String fileName,
 String graphName){

 String name = graphName + fileName;

 return name;

}//end dataFileName

//--
/**
 * The purpose of this method is to find all the data
 * block identifiers (the prefix) in the
 * ChannelTimePeriod matrix
 *
 * @param ChannelTimePeriodMatrix
 *
 * @return dataIDs
 */

private String dataIdPrefix(
 String [][] ChannelTimePeriodMatrix){

 String tempID = "";
 String workValue ="";
 String dataIDs = " ";
 char tempChar;

 Vector usedIDs = new Vector(1,1);

 for(int a=0; a<CHANNELS; a++){

 for(int b=0; b<TIMEPERIODS; b++){

 if(ChannelTimePeriodMatrix[a]
 [b] != null){

 140

 //check to see if already captured
 tempID =
 ChannelTimePeriodMatrix[a][b];
 String constructID = "";

 for (int c = 0; c<tempID.length();
 c++){

 tempChar = tempID.charAt(c);

 if (tempChar != '0' &&
 tempChar != '1' &&
 tempChar != '2' &&
 tempChar != '3' &&
 tempChar != '4' &&
 tempChar != '5' &&
 tempChar != '6' &&
 tempChar != '7' &&
 tempChar != '8' &&
 tempChar != '9'){

 constructID =
 constructID +
 tempChar+"";
 }
 }

 tempID = constructID;

 boolean isThere =
 usedIDs.contains(tempID);

 if(!isThere){

 usedIDs.addElement(tempID);

 }
 }
 }
 }

 for(int d=0; d<usedIDs.size(); d++){
 workValue = workValue +
 "["+usedIDs.get(d)+"]";
 }

 dataIDs = workValue;

 return dataIDs;

}//end dataIdPrefix

//--
/**

 141

 * The purpose of this method is to display the
 * contents of the delayDataID matrix and the
 * delayDataNumber matrix
 *
 * @param delayDataID
 * @param delayDataNumber
 * @param countIDs
 * @param fileName
 * @param valueOfRTT
 * @param valueOfT
 * @param scheduleAlgorithm
 * @param fileName
 * @param dataFileExport
 * @param fileOrder
 * @param testCountDisplay
 */

private void displayTimeDilveryMatrix(
 String [] delayDataID,
 int [][] delayDataNumber,
 int countIDs,
 String fileName,
 int valueOfRTT,
 int valueOfT,
 String scheduleAlgorithm,
 int numberDynamicChannels,
 String dataFileExport,
 String fileOrder,
 int testCountDisplay){

 FileOutputStream fout;

 try{

 fout = new FileOutputStream (fileName,true);

 int maxLength =
 maxVariableLength(delayDataNumber,
 countIDs);

 new PrintStream(fout).print("");
 System.out.print(
 "\ndata message prefix |");
 new PrintStream(fout).print(
 "data message prefix |");

 for(int a=0; a<countIDs; a++){

 int space =
 numberSpacesCHAR(delayDataID,
 a);

 for(int b=0; b<space; b++){

 142

 System.out.print(" ");
 new PrintStream(fout).print(
 " ");
 }

 System.out.print(delayDataID[a]);
 new PrintStream(fout).print(
 delayDataID[a]);

 for(int c=0;
 c<(maxLength-space-
 delayDataID[a].length()); c++){
 System.out.print(" ");
 new PrintStream(fout).print(" ");
 }

 System.out.print("|");
 new PrintStream(fout).print("|");
 }

 System.out.println(" avg");
 new PrintStream(fout).println(" avg");

 System.out.print("--------------------");
 new PrintStream(fout).print(
 "--------------------");

 for(int d=0; d<countIDs; d++){

 int space = numberSpacesCHAR(delayDataID,
 d);

 System.out.print("+");
 new PrintStream(fout).print("+");

 for(int e=0; e<(maxLength); e++){
 System.out.print("-");
 new PrintStream(fout).print("-");
 }

 }

 System.out.println("+-------");
 new PrintStream(fout).println("+------");

 String id = null;

 //for(int f=0; f<6; f++){
 for(int f=0; f<4; f++){

 if(f==0){
 id="data message size |";
 }

 143

 if(f==1){
 id="data msg size (F) |";
 }
 if(f==2){
 id="data msg size (D) |";
 }
 if(f==3){
 id=" RTT value: "+valueOfRTT;
 if(valueOfRTT <999){
 id=id+" ";
 }
 if(valueOfRTT <99){
 id=id+" ";
 }
 if(valueOfRTT <9){
 id=id+" ";
 }
 id=id+" |";
 }
 if(f==4){
 id=" T value: "+valueOfT;
 if(valueOfT <999){
 id=id+" ";
 }
 if(valueOfT <99){
 id=id+" ";
 }
 if(valueOfT <9){
 id=id+" ";
 }
 id=id+" |";
 }
 if(f==5){
 id=" delivery time |";
 }

 System.out.print(id);
 new PrintStream(fout).print(id);

 double sumOfRTT = 0;

 for(int g=0; g<countIDs; g++){

 int digitSize =
 numberSpacesINT(delayDataNumber,
 f,
 g);

 int leadingSpaces =
 calculateLeadingSpaces(
 maxLength,
 digitSize);

 int trailingSpaces =
 calculateTrailingSpaces(

 144

 maxLength,
 digitSize,
 leadingSpaces);

 for (int h = 0; h<leadingSpaces;
 h++){

 System.out.print(" ");
 new PrintStream(fout).print(" ");
 }

 if (f == 3){
 sumOfRTT =
 sumOfRTT +
 delayDataNumber[f][g];

 }

 System.out.print(
 delayDataNumber[f][g]);
 new PrintStream(fout).print(
 delayDataNumber[f][g]);

 for (int i = 0;
 i<trailingSpaces; i++){

 System.out.print(" ");
 new PrintStream(fout).print(" ");
 }

 System.out.print("|");
 new PrintStream(fout).print("|");

 if (f ==3 && (g+1) == countIDs){
 double avg = sumOfRTT/countIDs;
 avg = avg*1000;
 avg = Math.round(avg);
 avg = avg/1000;
 System.out.print(" "+avg);
 new PrintStream(fout).print(" "+
 avg);

 //write to data file
 writeToExportDataFile(
 testCountDisplay,
 scheduleAlgorithm,
 numberDynamicChannels,
 dataFileExport,
 fileName,
 fileOrder,
 avg);

 sumOfRTT = 0;

 145

 }

 }

 System.out.println();
 new PrintStream(fout).println();
 }

 System.out.print("--------------------");
 new PrintStream(fout).print(
 "--------------------");

 for(int j=0; j<(countIDs); j++){

 int space =
 numberSpacesCHAR(delayDataID,
 j);

 //System.out.print("+");
 //new PrintStream(fout).print("+");
 System.out.print("-");
 new PrintStream(fout).print("-");

 for(int k=0; k<(maxLength); k++){
 System.out.print("-");
 new PrintStream(fout).print("-");
 }

 }

 //System.out.println("|");
 //new PrintStream(fout).println("|");
 System.out.println("--------");
 new PrintStream(fout).println("--------");

 // Close the output stream
 fout.close();
 }

 //catches any error conditions
 catch (IOException e){
 System.err.println ("unable to write to file");
 System.exit(-1);
 }//end catch

 }//end displayDelayMatrix

//--
/**
* The purpose of this method is to find the maximum
* length of the variables store in the array for proper
* display on the screen.
*

 146

* @param delayDataNumber
* @param countIDs
*
* @return maxLength
*/

private int maxVariableLength(int [][] delayDataNumber,
 int countIDs){

 int maxLength = 1;

 for (int a = 0; a<countIDs; a++){

 for (int b = 0; b<3; b++){

 if(delayDataNumber[b][a]>10){
 maxLength=2;

 if(delayDataNumber[b][a]>100){
 maxLength=3;

 if(delayDataNumber[b][a]>1000){
 maxLength=4;

 if(delayDataNumber[b][a]
 >10000){
 maxLength=5;
 }
 }
 }
 }
 }
 }

 maxLength = maxLength+3;

 return maxLength;

}//end maxVariableLength

//--
/**
* The purpose of this method is to determine the
* number of spaces for proper display on the screen.
*
* @param delayDataID
* @param countIDs
*
* @return space
*/

private int numberSpacesCHAR(String [] delayDataID,
 int countIDs){

 147

 int space = 0;

 if(delayDataID[countIDs].length()==5){
 space = 0;
 }

 if(delayDataID[countIDs].length()==4){
 space = 1;
 }

 if(delayDataID[countIDs].length()==3){
 space = 1;
 }

 if(delayDataID[countIDs].length()==2){
 space = 2;
 }

 if(delayDataID[countIDs].length()==1){
 space = 3;
 }

 return space;

}//end numberSpacesCHAR

//--
/**
* The purpose of this method is to determine the
* number of spaces for proper display on the screen.
*
* @param delayDataNumber
* @param a
* @param b
*
* @return space
*/

private int numberSpacesINT(int [][] delayDataNumber,
 int a,
 int b){

 int space = 0;

 if(delayDataNumber[a][b]>=0){
 space = 1;
 }

 if(delayDataNumber[a][b]>9){
 space = 2;
 }

 148

 if(delayDataNumber[a][b]>99){
 space = 3;
 }

 if(delayDataNumber[a][b]>999){
 space = 4;
 }

 if(delayDataNumber[a][b]>9999){
 space = 5;
 }

 if(delayDataNumber[a][b]>99999){
 space = 6;
 }

 return space;

}//end numberSpacesINT

//--
/**
 * The purpose of this method is to calculate the
 * number of leading spaces to align the variable in
 * the cell.
 *
 * @param maxLength
 * @param digitSize
 *
 * @return leadingSpaces
 */

private int calculateLeadingSpaces(int maxLength,
 int digitSize){

 int leadingSpaces = 0;
 int addTo = 0;

 leadingSpaces = maxLength - digitSize;

 if(leadingSpaces == 3){
 leadingSpaces = 3;
 }
 if(leadingSpaces == 4){
 leadingSpaces = 3;
 }
 if(leadingSpaces == 5){
 leadingSpaces = 2;
 }

 return leadingSpaces;

}//end calculateLeadingSpaces

 149

//--
/**
 * The purpose of this method is to calculate the
 * number of trailing spaces to align the variable in
 * the cell.
 *
 * @param maxLength
 * @param digitSize
 * @param leadingSpaces
 *
 * @return trailingSpaces
 */

private int calculateTrailingSpaces(int maxLength,
 int digitSize,
 int
leadingSpaces){

 int trailingSpaces = 0;
 int addTo = 0;

 trailingSpaces = maxLength - digitSize -
 leadingSpaces;

 return trailingSpaces;

}//end calculateTrailingSpacesINT

//--
/**
 * The purpose of this method is to store the data
 * identifers (prefixes) in the array
 *
 * @param delayDataID
 * @param dataPrefix
 * @param countIDs
 */

private void storeDataIds(String []delayDataID,
 String dataPrefix,
 int countIDs){

 String constructPrefix = "";
 int index=0;

 for(int a = 0; a<dataPrefix.length(); a++){
 char tempChar = dataPrefix.charAt(a);

 if(tempChar == '['){

 for(int b=a+1;
 b<dataPrefix.length(); b++){
 char tempChar2 =
 dataPrefix.charAt(b);

 150

 if(tempChar2 != ']'){
 constructPrefix =
 constructPrefix + tempChar2 + "";
 }

 else{
 b = dataPrefix.length();
 delayDataID[index] =
 constructPrefix;
 constructPrefix="";
 index = index +1;
 }
 }
 }
 }

}//end storeDataIds

//--
/**
 * The purpose of this method is to count the data
 * block size for each data identifers (prefixes) and
 * store the value in the array
 *
 * @param ChannelTimePeriodMatrix
 * @param delayDataID
 * @param delayDataNumber
 * @param countIDs
 */

private void countStoreDataBlockSize(
 String[][] ChannelTimePeriodMatrix,
 String[] delayDataID,
 int [][] delayDataNumber,
 int countIDs){

 String currentDataId = null;
 String tempID = "";
 int countDataBlockSize = 0;
 int countDataBlockSizeFix = 0;
 int countDataBlockSizeDyn = 0;

 for(int a=0; a<countIDs; a++){
 currentDataId = delayDataID[a];

 for(int b=0; b<CHANNELS; b++){

 for(int c=0; c<TIMEPERIODS; c++){

 if(ChannelTimePeriodMatrix[b]
 [c]!=null){
 String tempDataPiece =
 ChannelTimePeriodMatrix[b][c];

 151

 //figure out prefix
 int numb = 0;

 while(
 tempDataPiece.charAt(numb)
 !='0' &&
 tempDataPiece.charAt(numb)
 !='1' &&
 tempDataPiece.charAt(numb)
 !='2' &&
 tempDataPiece.charAt(numb)
 !='3' &&
 tempDataPiece.charAt(numb)
 !='4' &&
 tempDataPiece.charAt(numb)
 !='5' &&
 tempDataPiece.charAt(numb)
 !='6' &&
 tempDataPiece.charAt(numb)
 !='7' &&
 tempDataPiece.charAt(numb)
 !='8' &&
 tempDataPiece.charAt(numb)
 !='9'){

 tempID =
 tempID +"" +
 tempDataPiece.charAt(numb);

 numb = numb +1;
 }

 if(tempID.equals(currentDataId)){
 countDataBlockSize =
 countDataBlockSize+1;

 if(b<FIXCHANNELS){
 countDataBlockSizeFix =
 countDataBlockSizeFix +1;
 }
 else {
 countDataBlockSizeDyn =
 countDataBlockSizeDyn +1;
 }

 tempID="";
 }

 else{
 tempID="";
 }
 }
 }
 }

 152

 delayDataNumber [0][a] = countDataBlockSize;
 delayDataNumber [1][a] = countDataBlockSizeFix;
 delayDataNumber [2][a] = countDataBlockSizeDyn;

 countDataBlockSize = 0;
 countDataBlockSizeFix = 0;
 countDataBlockSizeDyn = 0;

 tempID="";
 }

 }//end countStoreDataBlockSize

//--
/**
 * The purpose of this method is to count the time
 * periods taken for the data block for each data
 * identifers (prefixes) and store the value in the array
 *
 * @param ChannelTimePeriodMatrix
 * @param delayDataID
 * @param delayDataNumber
 * @param countIDs
 * @param valueOfRTT
 */

private void countStoreRTT(
 String[][] ChannelTimePeriodMatrix,
 String[] delayDataID,
 int [][] delayDataNumber,
 int countIDs,
 int valueOfRTT){

 String currentDataId = null;
 String tempID = "";
 int countTimePeriod = 0;
 boolean foundInTimePeriod = false;

 for(int a=0; a<countIDs; a++){
 currentDataId = delayDataID[a];

 for(int b=0; b<TIMEPERIODS; b++){

 for(int c=0; c<CHANNELS; c++){

 if(ChannelTimePeriodMatrix[c]
 [b]!=null){
 String tempDataPiece =
 ChannelTimePeriodMatrix[c][b];

 ////figure out prefix
 int numb =0;

 153

 while(
 tempDataPiece.charAt(numb)
 !='0' &&
 tempDataPiece.charAt(numb)
 !='1' &&
 tempDataPiece.charAt(numb)
 !='2' &&
 tempDataPiece.charAt(numb)
 !='3' &&
 tempDataPiece.charAt(numb)
 !='4' &&
 tempDataPiece.charAt(numb)
 !='5' &&
 tempDataPiece.charAt(numb)
 !='6' &&
 tempDataPiece.charAt(numb)
 !='7' &&
 tempDataPiece.charAt(numb)
 !='8' &&
 tempDataPiece.charAt(numb)
 !='9'){

 tempID =
 tempID +"" +
 tempDataPiece.charAt(numb);

 numb = numb +1;
 }

 if(tempID.equals(currentDataId)){
 foundInTimePeriod = true;
 tempID="";
 }

 else{
 tempID="";}
 }
 }

 if(foundInTimePeriod){
 countTimePeriod =
 countTimePeriod+1;
 }

 foundInTimePeriod = false;
 }

 tempID="";
 delayDataNumber [3][a] =
 countTimePeriod*valueOfRTT;
 countTimePeriod = 0;
 }

}//end countStoreRTT

 154

//--
/**
 * The purpose of this method is to calculate and
 * store T
 *
 * @param delayDataNumber
 * @param dataPrefix
 * @param ratioT
 * @param valueOfT
 */

private void calculateStoreT(
 int [][] delayDataNumber,
 int countIDs,
 int ratioT,
 int valueOfT){

 int blockSizeFix = 0;
 int blockSizeDyn = 0;
 int result = 0;

 for(int a=0; a<countIDs; a++){

 blockSizeFix = delayDataNumber [1][a];
 blockSizeDyn = delayDataNumber [2][a];

 result =
 ((1)*(valueOfT)*(blockSizeFix)*(ratioT))+
 ((ratioT)*(valueOfT)*(blockSizeDyn));
 delayDataNumber [4][a] = result;

 result = 0;

 }

}//end calculateStoreT

//--
/**
* The purpose of this method is to calculate the
* delivery time change and display the result
*
* @param delayDataID
* @param delayDataNumber
* @param originalTransferTime
* @param countIDs
* @param desiredDisplayBreaks
* @param cellSize
* @param fileName
* @param graphName
*/

 155

private void calculateDisplayThroughputChange(
 String [] delayDataID,
 int [][] delayDataNumber,
 int [] originalTransferTime,
 int countIDs,
 double desiredDisplayBreaks,
 int cellSize,
 String fileName,
 String graphName){

 double originalDeliveryTime = 0;
 double dynamicDeliveryTime = 0;
 double result = 0;
 int adjust = 0;

 FileOutputStream fout;

 try{

 fout =
 new FileOutputStream (fileName,true);

 int maxLength =
 maxVariableLength(delayDataNumber,
 countIDs);

 System.out.print(
 "delivery change |");
 new PrintStream(fout).print(
 "delivery change |");

 for(int a=0; a<countIDs; a++){
 originalDeliveryTime =
 originalTransferTime[a];
 dynamicDeliveryTime =
 delayDataNumber [5][a];

 if (originalDeliveryTime ==
 dynamicDeliveryTime){
 result = 0;
 }
 else {
 result = (dynamicDeliveryTime/
 originalDeliveryTime);
 result = (result*100);
 result = (100-result);
 result = Math.round(result);
 }

 if (result<-9){

 156

 adjust = maxLength-4;
 }

 if (result>-10){

 adjust = maxLength-2;
 }

 if (result>9){

 adjust = maxLength-3;
 }

 for(int b=0; b<(adjust); b++){

 new PrintStream(fout).print(

 System.out.print(" ");
 new PrintStream(fout).print(" ");
 }

 System.out.print((int)result+"%|");

 (int)result+"%|");

 }

 for (int c=0; c<2; c++){
 System.out.println(" ");
 new PrintStream(fout).println(" ");
 }

 result = calculateOverallDeliveryChange(
 delayDataNumber,
 originalTransferTime,
 countIDs);

 System.out.println(
 "OVERALL delivery change "+
 "is "+result+"%");
 new PrintStream(fout).println(
 "OVERALL delivery change "+
 "is "+result+"%");

 //output result to a file for plotting
 //values on a graph
 //valueForGraph(graphName,
 // result);

 }

 for (int e=0;

 for (int d=0; d<2; d++){
 System.out.println(" ");
 new PrintStream(fout).println(" ");

 e<((cellSize*desiredDisplayBreaks)+40);

 157

 e++){
 System.out.print("*");
 new PrintStream(fout).print("*");
 }

 for (int f=0; f<2; f++){
 System.out.println(" ");
 new PrintStream(fout).println(" ");
 }

 // Close the output stream
 fout.close();

 }

 catch (IOException e){

 */

 int [] originalTransferTime,

//catches any error conditions

 System.err.println (
 "unable to write to file");
 System.exit(-1);
 }//end catch

}//end calculateDisplayThroughputChange

//--
/**
 * The purpose of this method is to calculate the
 * delivery time change
 *
 * @param delayDataNumber
 * @param originalTransferTime
 * @param countIDs
 *
 * @return result

private double calculateOverallDeliveryChange(
 int [][] delayDataNumber,

 int countIDs){

 double originalDeliveryTime = 0;
 double dynamicDeliveryTime = 0;
 double result = 0;

for(int a=0; a<countIDs; a++){
 originalDeliveryTime =
 originalDeliveryTime +
 originalTransferTime[a];

 dynamicDeliveryTime =

 158

 dynamicDeliveryTime +
 delayDataNumber [5][a];
 }

 result = (dynamicDeliveryTime/
 originalDeliveryTime);
 result = (result*100);
 result = (100-result);
 result = Math.round(result);

 return result;

 * @param dataPrefix

}//end calculateOverallDeliveryChange

//--
/**
 * The purpose of this method is to calculate the
 * delivery time
 * (RTT+T)
 *
 * @param delayDataNumber

 * @param originalTransferTime
 * @param fileOrder
 */

private void calculateDeliveryTime(
 int [][] delayDataNumber,
 int countIDs,
 int [] originalTransferTime,
 String fileOrder){

 totalT = delayDataNumber [4][a];

 }

int totalRTT = 0;
 int totalT = 0;
 int result = 0;

 for(int a=0; a<countIDs; a++){
 totalRTT = delayDataNumber [3][a];

 result = totalRTT + totalT;
 delayDataNumber [5][a] = result;

 if(fileOrder == "BEFORE"){

 originalTransferTime [a] = result;

 result = 0;
 totalRTT = 0;
 totalT = 0;
 }

 159

}//end calculateDeliveryTime

//--
/**
 * The purpose of this method is to export data to a
 * file which will be used in a Microsoft Excel
 * spreadsheet. The file has commas to deliminate
 * between data

 if(testCountDisplay == 1 &&

 "test#,scheduleAlgorithm,"+

 *
 * @param testCountDisplay
 * @param scheduleAlgorithm
 * @param numberDynamicChannels
 * @param exportFileName
 * @param fileName
 * @param fileOrder
 * @param avg
 */

private void writeToExportDataFile(
 int testCountDisplay,
 String scheduleAlgorithm,
 int numberDynamicChannels,
 String exportFileName,
 String fileName,
 String fileOrder,
 double avg){

 FileOutputStream fout;

 try{

 fout =
 new FileOutputStream (exportFileName,true);

 fileOrder == "BEFORE"){

 new PrintStream(fout).println(

 "fixchannels,dynamic channels,"+
 "avg. time periods");
 }

 new PrintStream(fout).print(
 testCountDisplay+",");

 if (numberDynamicChannels == 0){

 new PrintStream(fout).print("none,");
 }

 else {

 160

 new PrintStream(fout).print(
 scheduleAlgorithm+",");
 }

 new PrintStream(fout).print(
 FIXCHANNELS+",");

 new PrintStream(fout).print(
 numberDynamicChannels+",");

 new PrintStream(fout).println(avg);

 // Close the output stream
 fout.close();
 }

 //catches any error conditions
 catch (IOException e){
 System.err.println (
 "unable to write to file");
 System.exit(-1);
 }//end catch

}//end writeToExportDataFile
//--
/**
 * The purpose of this method is to create (append) a
 * file for writing the results to. The results will
 * be used for plotting a graph.
 *
 * @param graphName
 * @param result
 */

private void valueForGraph(String graphName,
 double result){

 FileOutputStream fout;

 try{

 fout = new FileOutputStream (graphName,true);

 new PrintStream(fout).println(result);

 }

 //catches any error conditions
 catch (IOException e){
 System.err.println (
 "unable to write to file");
 System.exit(-1);
 }//end catch

 161

}//valueForGraph

//--

}//end class

D. PROGRAM – JAVA CLASS: FIRST COME FIRST SERVE

/**
 * Filename: FirstComeFirstServe.java
 * Revision: 6 September 2003
 * Date: 18 April 2003
 * Author: Andy Kaminsky
 * Thesis: Channel Allocation
 * Compiler: Java2 SDK 1.4
 */

/**
 * The purpose of this class is to allocate future
 * data from a fixed channel to a dynamic channel.
 * The protocol is based on a first come first
 * serve. For example, the first data block
 * will receive all the dynamic channels available.
 *
 * @author: Andy Kaminsky
 */

/**
 * Assumptions:
 * (1) There is at least one fixed channel
 * (2) All channels are the same capacity
 * (3) Fixed channels are before the Dynamic
 * channels
 * (4) There is a continous data block, therefore
 * once a null time period is detected it is
 * assumed that data block is done and no
 * further checking is neccessary
 */

import java.util.*;

public class FirstComeFirstServe
 extends ChannelAllocation {

 public FirstComeFirstServe () { }

//--
/**

 162

 * The purpose of this method is to run through the
 * First Come First Serve scheduling algorithm.
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 */

protected void firstComeFirstServe(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel){

 //count number of dynamic channels
 int numberDynamicChannels =
 countDynamicChannel (assignedChannel);

 //begin at first time period
 //1st FOR LOOP
 for(int currentTimePeriod=0;
 currentTimePeriod < TIMEPERIODS;
 currentTimePeriod++){

 boolean currentChannelFixed = false;
 boolean currentChannelUsed = false;
 String dataID = null;
 int countFutureData = 0;
 int countDown = 0;

 //begin at first channel
 //2nd FOR LOOP
 for(int currentChannel=0;
 currentChannel<CHANNELS;
 currentChannel++){

 //check to see if the channel is
 //fixed AND is used
 if(checkCurrentChannelFixed(
 assignedChannel,
 currentChannel,
 currentChannelFixed) == true
 &&
 checkCurrentChannelUsed (
 ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod,
 currentChannelUsed) == true){

 //determine the unique data
 //identifier for this data block
 dataID =
 dataID(ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod);

 //count how many time periods of

 163

 //this data block can be changed
 countFutureData =
 countFutureData(
 ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod,
 dataID);

 //create a temp array and place
 //working data block into
 String [][] WorkDataBlockMatrix;
 WorkDataBlockMatrix =
 new String [3][countFutureData];

 //place data block id
 workDataMatrix(
 ChannelTimePeriodMatrix,
 assignedChannel,
 WorkDataBlockMatrix,
 currentChannel,
 currentTimePeriod,
 countFutureData);

 //find empty dynamic channels in
 //time period+1
 int emptyDynamicChannel = 0;
 int tempTimePeriod = currentTimePeriod;

 //the current time period

 ChannelTimePeriodMatrix,

 //find an empty dynamic channel in

 for(countDown = countFutureData;
 countDown>0;
 countDown--){

 emptyDynamicChannel =
 findSameSizeEmptyDynamicChannel(
 assignedChannel,
 ChannelTimePeriodMatrix,
 currentChannel,
 tempTimePeriod);

 if(emptyDynamicChannel != 0){
 //assumption for now is data
 //size matches channel
 //capacity
 moveSameSizeEmptyDynamicChannel(

 assignedChannel,
 WorkDataBlockMatrix,
 currentChannel,
 tempTimePeriod,
 countFutureData,
 emptyDynamicChannel);

 164

 }

 } // end for

 emptyDynamicChannel = 0;

 //any "NO" in work data matrix needs
 //to be moved back into original array
 anyNO(ChannelTimePeriodMatrix,
 WorkDataBlockMatrix,
 currentChannel,
 tempTimePeriod,
 countFutureData);

 }// end if

 }//end 2nd FOR LOOP

 * @param assignedChannel

 */

}//end 1st FOR LOOP

}// end firstComeFirstServe

//--
/**
 * The purpose of this method is to count the number
 * of dynamic channels in the assignedChannel matrix
 *

 *
 * @return count

private int countDynamicChannel (
 String [][] assignedChannel){

 int count = 0;

 for(int a = 0; a<CHANNELS; a++){
 if(assignedChannel[a][0] == "D"){
 count = count + 1;
 }
 }

 return count;

}//end countDynamicChannel

//--
/**
 * The purpose of this method is to copy the data
 * block from the ChannelTimePeriodMatrix to a temporary
 * WorkDataMatrix
 *
 * @param ChannelTimePeriodMatrix

 165

 * @param assignedChannelMatrix
 * @param WorkDataBlockMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param countFutureData
 */

private void workDataMatrix (
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 String [][] WorkDataBlockMatrix,
 int currentChannel,
 int currentTimePeriod,
 int countFutureData){

 //workDataMatrix contains:
 //[0] data units (i.e. a2,a3,a4...)
 //[1] data size (i.e. 10k)
 //[2] dynamically allocated by YES or NO

 ChannelTimePeriodMatrix[currentChannel]

// copy contents
 for (int a = 0; a<countFutureData; a++){

 WorkDataBlockMatrix[0][a] =

 [(currentTimePeriod+a+2)];

 // for simulation place special marker
 // in the ChannelTimePeriodMatrix
 ChannelTimePeriodMatrix[currentChannel]
 [(currentTimePeriod+a+2)] = null;
 }

 // initalize completed block to "NO"

// place data block size
 for (int b = 0; b<countFutureData; b++){

 WorkDataBlockMatrix[1][b] =
 assignedChannel[currentChannel][1];
 }

 for (int c = 0; c<countFutureData; c++){

 WorkDataBlockMatrix[2][c] = "NO";
 }

}// end workDataMatrix

//--
/**
 * The purpose of this method is to copy the data block
 * from the temporary WorkDataMatrix to the
 * ChannelTimePeriodMatrix and to indicate that
 * particular data block is completed

 166

 *
 * @param ChannelTimePeriodMatrix
 * @param WorkDataBlockMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param tempNumber
 */

private void moveWorkBackToFixedChannel(
 String [][] ChannelTimePeriodMatrix,
 String [][] WorkDataBlockMatrix,
 int currentChannel,
 int tempTimePeriod,
 int tempNumber){

 ChannelTimePeriodMatrix[currentChannel]
 [tempTimePeriod] =
 WorkDataBlockMatrix[0][tempNumber];

 WorkDataBlockMatrix[2][tempNumber]="YES";

}// end moveWorkBackToFixedChannel

//--
/**
 * The purpose of this method is to display the
 * contents of the temporary WorkDataMatrix. This
 * helps in troubleshooting
 *
 * @param WorkDataBlockMatrix
 * @param countFutureData
 */

private void displayWorkDataBlock(
 String [][] WorkDataBlockMatrix,
 int countFutureData){

 for(int a = 0; a<countFutureData; a++){

 for(int b = 0; b<3; b++){

 System.out.print(
 WorkDataBlockMatrix[b][a]+" ");
 }

 System.out.println();

 }

}//end displayWorkDataBlock

//--
/**
 * The purpose of this method is to copy the remaining
 * data blocks from the temporary WorkDataMatrix back

 167

 * to the ChannelTimePeriodMatrix when there are no
 * available dynamic channels
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param workTimePeriod
 */

private void moveRemainingDataBlock(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int workTimePeriod){

 ChannelTimePeriodMatrix[currentChannel]
 [workTimePeriod-1] =
 ChannelTimePeriodMatrix[currentChannel]
 [workTimePeriod];

}//end moveRemainingDataBlock

//--
/**
 * The purpose of this method is to ensure consective
 * data elements are in correct order over the time
 * periods.
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param currentChannel
 * @param currentTimePeriod
 */

private void specialSwapDataCase(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 int currentChannel,
 int currentTimePeriod){

 [currentTimePeriod];

//[0] for the data element (ex. h3, e0)
 //[1] for the type of channel (dyanmic or fixed)
 //[2] for the data element prefix (ex. h, e)
 //[3] for the value of the data element (ex. 3, 0)
 String [][] SpecialCaseMatrix;
 SpecialCaseMatrix = new String [4][CHANNELS];

 //fill [0]
 for(int a=0; a<CHANNELS; a++){

 //fill [0]
 SpecialCaseMatrix[0][a] =
 ChannelTimePeriodMatrix[a]

 //fill [1]

 168

 SpecialCaseMatrix[1][a] =
 assignedChannel[a][0];

 //fill [2]
 // determine the unique data identifier for
 //this data block
 if (SpecialCaseMatrix[0][a]!= null){

 String tempID = "";
 String tempDataPiece =
 SpecialCaseMatrix[0][a];

 //figure out prefix
 int numb = 0;

 while(tempDataPiece.charAt(numb)!='0' &&
 tempDataPiece.charAt(numb)!='1' &&
 tempDataPiece.charAt(numb)!='2' &&
 tempDataPiece.charAt(numb)!='3' &&
 tempDataPiece.charAt(numb)!='4' &&
 tempDataPiece.charAt(numb)!='5' &&
 tempDataPiece.charAt(numb)!='6' &&
 tempDataPiece.charAt(numb)!='7' &&
 tempDataPiece.charAt(numb)!='8' &&
 tempDataPiece.charAt(numb)!='9'){

 tempID = tempID +"" +
 tempDataPiece.charAt(numb);
 numb = numb +1;

 }//end while

 SpecialCaseMatrix[2][a] = tempID;
 }//end if

 //fill[3]
 if (SpecialCaseMatrix[0][a]!= null){

 String tempID = "";
 String tempDataPiece =
 SpecialCaseMatrix[0][a];

 //figure out number

 for(int b=0; b<tempDataPiece.length();
 b++){

 if(tempDataPiece.charAt(b)=='0' ||
 tempDataPiece.charAt(b)=='1' ||
 tempDataPiece.charAt(b)=='2' ||
 tempDataPiece.charAt(b)=='3' ||
 tempDataPiece.charAt(b)=='4' ||
 tempDataPiece.charAt(b)=='5' ||
 tempDataPiece.charAt(b)=='6' ||
 tempDataPiece.charAt(b)=='7' ||

 169

 tempDataPiece.charAt(b)=='8' ||
 tempDataPiece.charAt(b)=='9'){

 tempID = tempID +"" +
 tempDataPiece.charAt(b);

 }
 }//end for

 SpecialCaseMatrix[3][a] = tempID;
 }//end if
 }

 for (int c=0; c<CHANNELS; c++){

 if(SpecialCaseMatrix[1][c]=="F"){

 if(SpecialCaseMatrix[2][c]!=null){

 tempCheckValue);

 String tempCheckID =
 SpecialCaseMatrix[2][c];
 String tempCheckValue =
 SpecialCaseMatrix[3][c];

 for(int d=c; d<CHANNELS; d++){

 if(SpecialCaseMatrix[1][d]=="D"){

 if(tempCheckID.equals
 (SpecialCaseMatrix[2][d])){

 String tempCheckValue2 =
 SpecialCaseMatrix[3][d];

 int value =
 Integer.parseInt(

 int value2 =
 Integer.parseInt(
 tempCheckValue2);

 if(value2<value){

 ChannelTimePeriodMatrix[c]
 [currentTimePeriod] =
 SpecialCaseMatrix[0][d];
 ChannelTimePeriodMatrix[d]
 [currentTimePeriod] =
 SpecialCaseMatrix[0][c];

 d=CHANNELS;
 }
 }
 }

 170

 }
 }
 }
 }

}//end specialSwapDataCase

//--
/**

 * dynamic channels of the same size

 * The purpose of this method is to copy the data
 * blocks from the temporary WorkDataMatrix back to the
 * ChannelTimePeriodMatrix when there are available

 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param WorkDataBlockMatrix
 * @param currentTimePeriod
 * @param countFutureData
 * @param emptyDynamicChannel
 */

private void moveSameSizeEmptyDynamicChannel(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 String [][] WorkDataBlockMatrix,
 int currentChannel,
 int currentTimePeriod,
 int countFutureData,
 int emptyDynamicChannel){

 for(int a = 0; a<countFutureData; a++){

 if (WorkDataBlockMatrix[2][a] == "NO"
 &&
 ChannelTimePeriodMatrix
 [emptyDynamicChannel]
 [currentTimePeriod+1] == null
 &&
 assignedChannel
 [emptyDynamicChannel][0] == "D"){

 ChannelTimePeriodMatrix
 [emptyDynamicChannel]
 [currentTimePeriod+1] =
 WorkDataBlockMatrix[0][a];

 WorkDataBlockMatrix[2][a] = "YES";
 a = countFutureData;
 }
 }

}//end moveSameSizeEmptyDynamicChannel

 171

//--
/**
 * The purpose of this method is to check if the
 * current channel is fixed
 *
 * @param assignedChannel
 * @param currentChannel
 * @param currentChannelFixed
 *
 * @return isFixed
 */

private boolean checkCurrentChannelFixed(
 String [][] assignedChannel,
 int currentChannel,
 boolean currentChannelFixed){

 boolean isFixed = false;

 if(assignedChannel[currentChannel][0]=="F"){

 isFixed = true;
 }

 else {

 isFixed=false;
 }

 return isFixed;

}//end checkCurrentChannelFixed

//--
/**
 * The purpose of this method is to check if the current
 * channel is used
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param currentChannelUsed
 *
 * @return isUsed
 */

private boolean checkCurrentChannelUsed(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod,
 boolean currentChannelUsed){

 boolean isUsed = false;

 172

 if(ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod]!=null){

 isUsed=true;
 }

 else {

 isUsed=false;
 }

 return isUsed;

}//end checkCurrentChannelUsed

//--

 *

/**
 * The purpose of this method is to check if the
 * current channel + 2 time periods of the same data
 * block is used. The idea for this is since the current
 * time period is happening at this time it is too late
 * to use the empty channels however any channels in
 * the future time periods may be used (or better
 * termed: scheduled)
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param dataID

 * @return timePeriodCount
 */

private int countFutureData(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod,
 String dataID){

 int timePeriodCount = 0;
 String tempValue = null;
 char tempChar;

 for(int a=0;
 (currentTimePeriod+2+a)<TIMEPERIODS; a++){

 // assumption is a continous data block,
 //therefore once a null time period is
 //detected it is assumed that data block
 //is done and no further checking is
 //neccessary
 if(ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod+2+a] != null){

 173

/**

 * message id used in this scheduling algorithm, for

 //check to see if part of current data
 //block
 tempValue =
 ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod+2+a];

 tempChar = tempValue.charAt(0);
 tempValue = tempChar + "";

 if (tempValue.charAt(0) ==
 dataID.charAt(0)){

 timePeriodCount++;
 }
 }
 }

 return timePeriodCount;

}//end countFutureData

//--

 * The purpose of this method is to determine the data

 * example, one data block is z0,z2,z3... and another
 * data message is y1,y2,y3...
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 *
 * @return dataID
 */

private String dataID(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod){

 String firstDataBlock = null;
 String dataID = null;
 char firstDataID;

 firstDataBlock = ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod];

 firstDataID = firstDataBlock.charAt(0);
 dataID = firstDataID + "";

 return dataID;

 174

}//end dataID

//--
/**
 * The purpose of this method is to find an empty
 * dynamic channel of the same size as data of a time
 * period to be moved
 *
 * @param assignedChannel
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 *
 * @return foundMatch
 */

private int findSameSizeEmptyDynamicChannel(
 String [][] assignedChannel,
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod){

 int foundMatch = 0;

 for(int a = 0;
 (currentChannel+a)<CHANNELS; a++){

 // (assignedChannel[currentChannel+a][1] ==

 [currentChannel+a]

 // if the channel is Dynamic AND same
 //size AND empty
 if((assignedChannel
 [currentChannel+a][0] == "D")
 // &&

 // assignedChannel[currentChannel][1])
 &&
 (ChannelTimePeriodMatrix

 [currentTimePeriod+1] == null)){

 foundMatch=(a+currentChannel);
 a = CHANNELS+1;
 }
 }

 return foundMatch;

}//end findSameSizeEmptyDynamicChannel

//--
/**
 * The purpose of this method is to find any "NO" in
 * the array due to not enough empty dynamic channels
 * and place back into the main Channel Time Period
 * matrix. As a result, when future time periods are
 * examined this data block may be reassigned if any

 175

 * future empty dynamic channels exist.
 *
 * @param ChannelTimePeriodMatrix
 * @param WorkDataBlockMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param countFutureData
 *
 */

private void anyNO(
 String [][] ChannelTimePeriodMatrix,
 String [][] WorkDataBlockMatrix,
 int currentChannel,
 int currentTimePeriod,
 int countFutureData){

 int timePeriodTracker = 2;

}//end class

for (int a= 0; a<countFutureData; a++){

 if(WorkDataBlockMatrix[2][a]=="NO"){

 ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod+timePeriodTracker]=
 WorkDataBlockMatrix[0][a];
 timePeriodTracker= timePeriodTracker+1;

 }
 }

}//end anyNO

//--

E. PROGRAM – JAVA CLASS: FAIR DISTRIBUTION

/**
 * Filename: FairDistribution.java
 * Date: 5 June 2003
 * Revision: 5 September 2003
 * Author: Andy Kaminsky
 * Thesis: Channel Allocation
 * Compiler: Java2 SDK 1.4
 */

/**
 * The purpose of this class is to allocate future

 176

 * data from a fixed channel to a dynamic channel.
 * The scheduling algorithm is based on a
 * proportional fair distribution from the
 * total number of future data message in a given
 * time period. For example, a data message of 10
 * units and another data message of 5 units will
 * get 2/3 of the dynamic channels and 1/3 of the
 * dynamic channels, respectively.
 *
 * @author: Andy Kaminsky
 */

/**
 * Assumptions:
 * (1) There is at least one fixed channel
 * (2) All channels are the same capacity
 * (3) Fixed channels are before the dynamic
 * channels
 * (4) There is a continous data block,
 * therefore once a null time period is
 * detected it is assumed that data block
 * is done and no further checking is
 * neccessary
 */

import java.util.*;

public class FairDistribution
 extends ChannelAllocation {

 public FairDistribution () { }

//--
/**
 * The purpose of this method is to run through the
 * Fair Distribution scheduling algorithm.
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 */

protected void fairDistribution(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel){

 numberOfFixChannel =

//find out the number of fixed channels
 int numberOfFixChannel = 0;

 countFixChannel(assignedChannel);

 //find out the number of dynamic channels

 177

 int numberOfDynamicChannel = 0;
 numberOfDynamicChannel =
 countDynamicChannel(assignedChannel);

 //begin at first time period
 //1st FOR LOOP
 for(int currentTimePeriod=0;
 currentTimePeriod < TIMEPERIODS;
 currentTimePeriod++){

 boolean currentChannelFixed = false;
 boolean currentChannelUsed = false;
 String dataID = null;
 int countFutureData = 0;
 int countDown = 0;

 //begin at first channel

 currentChannel++){

 //create a temp array for only this
 //time period
 double [][] futureChannelMatrix;
 futureChannelMatrix =
 new double [2][numberOfFixChannel];

 //initialize array
 for(int a = 0; a<numberOfFixChannel; a++){
 for(int b = 0; b<2; b++){
 futureChannelMatrix[b][a] = 0;
 }
 }

 //2nd FOR LOOP
 for(int currentChannel=0;
 currentChannel<CHANNELS;

 //check to see if the channel
 //is fixed AND is used
 if(checkCurrentChannelFixed
 (assignedChannel,
 currentChannel,
 currentChannelFixed) == true
 &&
 checkCurrentChannelUsed
 (ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod,
 currentChannelUsed) == true){

 //determine the unique data
 //identifier for this data block
 dataID =
 dataID(ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod);

 178

 //count how many time periods of
 //this data block can be changed
 countFutureData =
 countFutureData
 (ChannelTimePeriodMatrix,
 currentChannel,
 currentTimePeriod,
 dataID);

 futureChannelMatrix[0]
 [currentChannel] =
 countFutureData;

 }// end if

 }//end 2nd FOR LOOP

 //calculate total
 //(for determining the percentage)
 double countAllFoundData =
 countFoundData
 (futureChannelMatrix,
 numberOfFixChannel);

 //dynamic channels to

 //calculate the portion to allocate

 calculateDynamicChannelAllocation
 (futureChannelMatrix,
 countAllFoundData,
 numberOfFixChannel,
 numberOfDynamicChannel);

 //move future data messages to current
 //time period dynamic channels
 moveToDynamic
 (ChannelTimePeriodMatrix,
 assignedChannel,
 futureChannelMatrix,
 numberOfFixChannel,
 currentTimePeriod);

 }//end 1st FOR LOOP

}//end fairDistribution

///--
/**
 * The purpose of this method is to count the number
 * of fixed channels in the assignedChannel matrix
 *
 * @param assignedChannel
 *
 * @return count
 */

 179

private int countFixChannel (
 String [][] assignedChannel){

 int count = 0;

 }

 return count;

for(int a = 0; a<CHANNELS; a++){
 if(assignedChannel[a][0] == "F"){
 count = count + 1;
 }

}//end countFixChannel

//--
/**
 * The purpose of this method is to count the number
 * of dynamic channels in the assignedChannel matrix
 *
 * @param assignedChannel
 *
 * @return count
 */

private int countDynamicChannel (
 String [][] assignedChannel){

 int count = 0;

private double countFoundData(

for(int a = 0; a<CHANNELS; a++){
 if(assignedChannel[a][0] == "D"){
 count = count + 1;
 }
 }

 return count;

}//end countDynamicChannel

//--
/**
 * The purpose of this method is to count the total
 * number of future data blocks found during this
 * pariticular time period
 *
 * @param futureChannelMatrix
 * @param numberOfFixChannel
 *
 * @return count
 */

 double [][] futureChannelMatrix,
 int numberOfFixChannel){

 180

 double count = 0;

for(int a = 0; a<numberOfFixChannel; a++){
 count = count+futureChannelMatrix[0][a];
 }

 return count;

}//end countFoundData

//--
/**
 * The purpose of this method is to calculate the
 * number of dynamic channels given to each channel
 * needing future data to send.
 *
 * @param futureChannelMatrix
 * @param countAllFoundData
 * @param numberOfFixChannel
 * @param numberOfDynamicChannel
 *
 */

private void calculateDynamicChannelAllocation(
 double [][] futureChannelMatrix,
 double countAllFoundData,
 int numberOfFixChannel,
 int numberOfDynamicChannel){

 double subtotalAllocated = 0;
 int totalChannels = numberOfFixChannel +
 numberOfDynamicChannel;

 figureOut = futureChannelMatrix[0][a];

for(int a = 0; a<numberOfFixChannel; a++){

 if(futureChannelMatrix[0][a] == 0){
 futureChannelMatrix[1][a] = 0;
 }

 else {

 double figureOut;

 figureOut =
 Math.round(
 (figureOut/countAllFoundData)*
 (totalChannels-numberOfFixChannel));

 futureChannelMatrix[1][a] = figureOut;

 if((figureOut+subtotalAllocated)>
 (totalChannels-numberOfFixChannel)){
 figureOut = figureOut-1;

 181

 futureChannelMatrix[1][a] =
 figureOut;
 }

 subtotalAllocated =
 subtotalAllocated+figureOut;
 }
 }

 //count number of dynamic channels allocated
 double currentDynamicChannels = 0;

 currentDynamicChannels +

for(int b=0; b<numberOfFixChannel; b++){

 currentDynamicChannels =

 futureChannelMatrix[1][b];
 }

 //check if all dynamic channels are allocated
 if(currentDynamicChannels !=
 numberOfDynamicChannel &&
 currentDynamicChannels<countAllFoundData){

//--

 for(int c=0; c<numberOfFixChannel; c++){

 if(futureChannelMatrix[0][c]>
 futureChannelMatrix[1][c]){

 futureChannelMatrix[1][c] =
 futureChannelMatrix[1][c] + 1;

 c=numberOfFixChannel;
 }
 }

 }

 return;

}//end calculateDynamicChannelAllocation

/**
 * The purpose of this method is to display the
 * contents of the futureChannelMatrix. This helps in
 * troubleshooting.
 *
 * @param futureChannelMatrix
 * @param numberOfFixChannel
 *
 */

private void displayFutureChannelMatrix(

 182

 double [][] futureChannelMatrix,
 int numberOfFixChannel){

 }

for(int a = 0; a<numberOfFixChannel; a++){

 if (futureChannelMatrix[0][a]<10){
 System.out.print(
 " "+futureChannelMatrix[0][a]+"| ");

 else {
 System.out.print(
 " "+futureChannelMatrix[0][a]+"|");
 }
 }

 System.out.println();

 for(int b = 0; b<numberOfFixChannel; b++){

 if (futureChannelMatrix[1][b]<10){
 System.out.print(
 " "+futureChannelMatrix[1][b]+"| ");
 }

 else {
 System.out.print(
 " "+futureChannelMatrix[1][b]+"|");
 }
 }

 System.out.println("\n\n");

 return;

}//end displayFutureChannelMatrix

//--
/**
 * The purpose of this method is to move a data block
 * to a dynamic channel and push the remaining data
 * blocks up one where there is a gap (a queue).
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param futureChannelMatrix
 * @param numberOfFixChannel
 * @param currentTimePeriod
 *
 */

private void moveToDynamic(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,

 183

 double [][] futureChannelMatrix,
 int numberOfFixChannel,
 int currentTimePeriod){

 for(int currentFixedChannel = 0;

 for(int dynamicChannelAllocated=0;

 moveFixedtoDynamic(

 //of fixed channel up by 1

 currentFixedChannel<numberOfFixChannel;
 currentFixedChannel++){

 if (futureChannelMatrix[1]
 [currentFixedChannel]!=0){

 dynamicChannelAllocated<
 (futureChannelMatrix[1]
 [currentFixedChannel]);
 dynamicChannelAllocated++){

 double numberToMoveLeft =
 futureChannelMatrix[1]
 [currentFixedChannel];

 double numberFixedDataLeft =
 futureChannelMatrix[0]
 [currentFixedChannel];

 //find an empty dynamic channel
 int dynamicChannelLocation =
 findDynamicChannel(
 ChannelTimePeriodMatrix,
 assignedChannel,
 currentTimePeriod);

 //move data element from future
 //fixed to dynamic channel

 ChannelTimePeriodMatrix,
 dynamicChannelLocation,
 currentTimePeriod,
 currentFixedChannel);

 //move all remaining data elements

 moveRemainingFixedUp(
 ChannelTimePeriodMatrix,
 futureChannelMatrix,
 currentTimePeriod,
 currentFixedChannel,
 numberFixedDataLeft);
 }
 }
 }

 return;

 184

}//end moveToDynamic

//--
/**
 * The purpose of this method is to find an empty
 * dynamic channel in the current time period of the
 * ChannelTimePeriodMatrix
 *
 * @param ChannelTimePeriodMatrix
 * @param assignedChannel
 * @param currentTimePeriod
 *
 */

private int findDynamicChannel(
 String [][] ChannelTimePeriodMatrix,
 String [][] assignedChannel,
 int currentTimePeriod){

 for(int a = 0; a<CHANNELS; a++){

int foundEmptyDynamicChannel = 0;

 //first find a dynamic channel
 if (assignedChannel[a][0] =="D"){

 * @param dynamicChannelLocation

 String [][] ChannelTimePeriodMatrix,

 //second find an empty dynamic channel
 if(ChannelTimePeriodMatrix
 [a][currentTimePeriod+1] == null){

 //record the match
 foundEmptyDynamicChannel = a;
 a = CHANNELS;
 }
 }
 }

 return foundEmptyDynamicChannel;

}//end findDynamicChannel

//--
/**
 * The purpose of this method is to move the data
 * element from the fixed channel to the dynamic channel
 *
 * @param ChannelTimePeriodMatrix

 * @param currentTimePeriod
 * @param currentFixedChannel
 *
 */

private void moveFixedtoDynamic(

 185

 int dynamicChannelLocation,
 int currentTimePeriod,
 int currentFixedChannel){

 ChannelTimePeriodMatrix[dynamicChannelLocation]
 [currentTimePeriod+1]=
 ChannelTimePeriodMatrix[currentFixedChannel]
 [currentTimePeriod+2];

 * data blocks up by one (to fill in the empty time

 ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+2]=null;

 return;

}//end moveFixedtoDynamic

//--
/**
 * The purpose of this method is to move the remaining

 * period left by moving a data element to a dynamic
 * channel)
 *
 * @param ChannelTimePeriodMatrix
 * @param futureChannelMatrix
 * @param currentTimePeriod
 * @param currentFixedChannel
 * @param numberFixedDataLeft
 *
 */

private void moveRemainingFixedUp(
 String [][] ChannelTimePeriodMatrix,
 double [][] futureChannelMatrix,
 int currentTimePeriod,
 int currentFixedChannel,
 double numberFixedDataLeft){

 int lastDataBlock = 0;
 double numberOfDataBlocks =
 futureChannelMatrix[0][currentFixedChannel];

 if(numberFixedDataLeft>1){

 for(int a= 0; a<(numberOfDataBlocks-1);
 a++){

 if(ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+a+2] == null){

 ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+a+2] =

 186

 ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+a+3];

 ChannelTimePeriodMatrix

 [currentFixedChannel]
 [currentTimePeriod+a+3] = null;

}//end moveRemainingFixedUp

 boolean isFixed = false;

 lastDataBlock = a;
 }
 }

 ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+lastDataBlock+3]
 = null;
 }

 else{

 ChannelTimePeriodMatrix
 [currentFixedChannel]
 [currentTimePeriod+2] = null;
 }

 return;

//--
/**
 * The purpose of this method is to check if the
 * current channel is fixed
 *
 * @param assignedChannel
 * @param currentChannel
 * @param currentChannelFixed
 *
 * @return isFixed
 */

private boolean checkCurrentChannelFixed(
 String [][] assignedChannel,
 int currentChannel,
 boolean currentChannelFixed){

 if(assignedChannel[currentChannel][0]=="F"){

 isFixed = true;
 }

 else isFixed=false;

 187

 return isFixed;

}//end checkCurrentChannelFixed

//--
/**

 * @param ChannelTimePeriodMatrix

 * @param currentTimePeriod

 * The purpose of this method is to check if the
 * current channel is used
 *

 * @param currentChannel

 * @param currentChannelUsed
 *
 * @return isUsed
 */

private boolean checkCurrentChannelUsed(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod,
 boolean currentChannelUsed){

 return isUsed;

boolean isUsed = false;

 if(ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod]!=null){

 isUsed=true;
 }

 else isUsed=false;

}//end checkCurrentChannelUsed

//--
/**
 * The purpose of this method is to check if the
 * current channel + 2 time periods of the same data
 * block is used. The idea for this is since the current
 * time period is happening at this time it is too late
 * to use the empty channels, however any channels in
 * the future time periods may be used (or better
 * termed: scheduled)
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 * @param dataID
 *
 * @return timePeriodCount
 */

 188

private int countFutureData(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod,
 String dataID){

 int timePeriodCount = 0;
 String tempValue = null;
 char tempChar;

 for(int a=0; (currentTimePeriod+2+a)<
 TIMEPERIODS; a++){

 if(ChannelTimePeriodMatrix

 // assumption is a continous data block,
 //therefore once a null time period is
 //detected it is assumed that data block is
 //done and no further checking is neccessary

 [currentChannel]
 [currentTimePeriod+2+a] != null){

 //check to see if part of current data block
 tempValue =
 ChannelTimePeriodMatrix
 [currentChannel]
 [currentTimePeriod+2+a];

 tempChar = tempValue.charAt(0);
 tempValue = tempChar + "";

 if (tempValue.charAt(0) ==
 dataID.charAt(0)){

 timePeriodCount++;
 }
 }
 }

 return timePeriodCount;

}//end countFutureData

//--
/**
 * The purpose of this method is to determine the data
 * message id used, for example one data block is z0,z2,
 * z3... and another data message is y1,y2,y3...
 *
 * @param ChannelTimePeriodMatrix
 * @param currentChannel
 * @param currentTimePeriod
 *
 * @return dataID
 */

 189

private String dataID(
 String [][] ChannelTimePeriodMatrix,
 int currentChannel,
 int currentTimePeriod){

String firstDataBlock = null;
 String dataID = null;
 char firstDataID;

 firstDataBlock =
 ChannelTimePeriodMatrix[currentChannel]
 [currentTimePeriod];

 dataID = firstDataID + "";

 return dataID;

firstDataID = firstDataBlock.charAt(0);

}//end dataID

//--

}//end class

 190

LIST OF REFERENCES

[1] Muller, Nathan J. Desktop Encyclopedia of Telecommunications. pp. 348. McGraw
& Hill, 1998.

[2] Lundy, G. M. “The Internet.” Naval Postgraduate School, Monterey, CA, February
2003.

[3] Sanders, Ray W. “Bandwidth-On-Demand Layer 1.5 Protocols for Enhanced
Broadband Wireless Access System Performance.” pp. 1599-1602. IEEE
Communications Magazine, 2000.

[4] Jordon, Scott. “Resource Allocation in Wireless Networks”. 1996.
<www.eng.uci.edu/~sjordan/research/ projects/DCA/overview.pdf>, February 2003.

[5] Welin, Glen. “Internet Connections and Bandwidth Problems”.
< >, March 2003. http://www.mala.bc.ca/~soules/media112/zine/glen/glen.htm#Bandwidth

[6] Anonymous. “How do you Know Whether Your LAN Needs an Upgrade?”.
<http://www.greennet.ge/solutions/upgrade.html>, March 2003.

[7] Katz, Randy H. “CS 294-7: Media Access – Aloha and CSMA”. <http://www.sss-
mag.com/pdf/1mediaaccess.pdf>. University of California, Berkeley, CA, 1996.

[8] Bambos, Nicholas, Chen, Shou, Kim, Jung-Won, Mitra, Debasis. “Noninvasive
Channel Probing for Distributed Admission Control and Channel Allocation in Wireless
Networks”. Stanford University, Stanford, CA, 2002.

[9] Jordan, Scott and Schwabe, Eric. “ Worst-case Performance of Cellular Channel
Assignment Policies”. pp. 265-275. J.C. Baltzer AG, Science Publishers, 1996.

[10] Anonymous. “Channel Allocation Problem – Feb. 2002”. <www-
lce.eng.cam.ac.uk/~shw23/research/Channel%20Allocation>. November 2002.

[11] Leung, Kin K. and Srivastava, Arty. “Dynamic Allocation of Downlink and Uplink
Resource for Broadband Services in Fixed Wireless Networks”. Pp. 990-1006. IEEE
Journal on Selected Areas in Communications, vol. 17, no. 5, May 1999.

[12] Yardi, Shrirang. “Channel Allocation Problem”.
<www.cs.uga.edu/~rwr/F01_6610/ABSTRACTS/yardi.htm>, December 2002.

[13] Anonymous. “ICS 161: Design and Analysis of Algorithms – March 1996”.
www.ics.uci.edu/~eppstein/161/960312.html>. December 2002.

[14] Jiang, Hua, Lee, Hee, and Basu, Kalyan. “Self-engineered Adaptive Channel
Allocation”. pp. 246-250. IEEE, March 1999.

 191

http://www.greennet.ge/solutions/upgrade.html
http://www.sss-mag.com/pdf/1mediaaccess.pdf
http://www.sss-mag.com/pdf/1mediaaccess.pdf
http://www.cs.uga.edu/~rwr/F01_6610/ABSTRACTS/yardi.htm
http://www.ics.uci.edu/~eppstein/161/960312.html

[15] Chen, Jie, Seah, David, and Xu, Wen. “Channel Allocation for Cellular Networks
Using Heuristic Methods”.

[16] Ogawa, Takako. “Integrated Service Digital Network”, 1999.
<http://xena.fullerton.edu/~ogawat/>, February 2003.

[17] Anonymous. “Inverse Multiplexing”.
<http://whatis.techtarget.com/definition/0,,sid9_gci214323,00.html>, February 2003.

[18] Wong, Robert Jr., Posey, Melanie, and Becker, Ralph. “An Introduction to ISDN”.
<http://america3.pcs.cnu.edu/~dtranngu/paper2.html>, February 2003.

[19] Fredette, Paul H. “The Past, Present, and Future of Inverse Multiplexing.” pp 42-
46. IEEE Communications Magazine, April 1994.

[20] Muller, Nathan J. Desktop Encyclopedia of Telecommunications. pp. 241-243.
McGraw & Hill, 1998.

[21] Schrader, Ray. “ISDN”. <http://disc.cba.uh.edu/~rhirsch/spring97/schrad1.htm>,
February 2003.

[22] Taylor, Steve and Wexler, Joanie. “Link Layer Inverse Multiplexing”. 2002.
<www.nwfusion.com/newsletters/frame/2002/01674487.html>, February 2003.

[23] 3Com. “Inverse Multiplexing over ATM (IMA)”. 3Com Technical Papers, 1997.

[24] Sklower, K., Lloyd, B., McGregor, G., Carr, D., Coradetti, T. “RFC 1990, The PPP
Multilink Protocol”. 1996. < http://www.armware.dk/RFC/rfc/rfc1990.html>, March
2003.

[25] Anonymous. “RFC 1618 – PPP over ISDN”.
<http://asg.web.cmu.edu/rfc/rfc1618.html>, May 2003.

[26] Anonymous. “All about Narrowband ISDN”. <http://hea-
www.harvard.edu/~fine/ISDN/n-isdn.html>, April 2003.

[27] Snoeren, Alex C. “Adaptive Inverse Multiplexing for Wide-Area Wireless
Networks”. Massachusetts Institute of Technology, December 1999.

[28] Fountanas, Leonidas. “An Assessment of Emerging Wireless Broadband
Technologies”. Thesis. Naval Postgraduate School, Monterey, CA December 2001.

[29] Anonymous. “ Synchronous Adaptive Infrastructure Network (SAIN)
Background”. http://www.circuitpath.com/technology/background.htm>, May 2003.

 192

http://xena.fullerton.edu/~ogawat/
http://whatis.techtarget.com/definition/0,,sid9_gci214323,00.html
http://america3.pcs.cnu.edu/~dtranngu/paper2.html
http://disc.cba.uh.edu/~rhirsch/spring97/schrad1.htm
http://www.armware.dk/RFC/rfc/rfc1990.html
http://asg.web.cmu.edu/rfc/rfc1618.html
http://hea-www.harvard.edu/~fine/ISDN/n-isdn.html
http://hea-www.harvard.edu/~fine/ISDN/n-isdn.html
http://www.circuitpath.com/technology/background.htm

[30] Ha, Joon-Ho and Pinkston, Timothy. “A Token-based Channel Access Protocol for
Wavelength Division Multiplexed Optically Interconnected Multiprocessors.”
<http://ipdps.eece.unm.edu/1997/wocs/hapinkst.pdf>, University of Southern California,
March 2003.

[31] Cu, Gregory and Marcos, Nelson. “CSMA/CD-Based Multiple Network Lines
Dynamic Utilization Algorithm”. pp. 151-160. Proceedings of the Philippine Computing
Science Congress, 2000.

[32] Hac, Anna and Chen, Zhengping. “Hybrid Channel Allocation in Wireless
Networks”. pp. 2329-2333. IEEE Communications Magazine, 1999.

[33] Anonymous. Linux Networx.
<http://www.linuxnetworx.com/products/dual_eth.php>, March 2003.

[34] Anonymous. Beowulf Page, University of Southern California.
<http://ilab.usc.edu/beo>, March 2003.

[35] Zhao, Baosong and Andersen, Daniel. “Heterogeneous Channel Bonding on a
Beowulf Cluster”. < http://www.dvo.ru/bbc/pdpta/vol5/p410.pdf>, March 2003.

[36] Qiao, Daji and Shin, Kang G. “Achieving Effiecient Channel Utilization and
Weighted Fairness for Data Communications in IEEE 802.11 WLAN under the DCF”.
University of Michigan.

[37] Tanenbaum, Andrew S. “Computer Networks”. pp. 214-215, 631-641. Prentice-
Hall, Inc., 1998.

[38] Kurose, James F. and Ross, Keith W. “Computer Networking”. pp. 18-19.
Addison Wesley, 2001.

 193

http://ipdps.eece.unm.edu/1997/wocs/hapinkst.pdf
http://www.linuxnetworx.com/products/dual_eth.php
http://ilab.usc.edu/beo
http://www.dvo.ru/bbc/pdpta/vol5/p410.pdf

THIS PAGE INTENTIONALLY LEFT BLANK

 194

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor John Gibson
Department of Computer Science
Naval Postgraduate School

 Monterey, California

4. Professor Geoffrey Xie

Naval Postgraduate School
Department of Computer Science

 Monterey, California

 195

	INTRODUCTION
	PREFACE
	PROBLEM STATEMENT
	MOTIVATION

	BACKGROUND
	A.DEVELOPMENT
	B.BANDWIDTH
	C.UTILIZATION
	CHANNEL ALLOCATION
	Fixed Channel Allocation (FCA)
	Dynamic Channel Allocation (DCA)
	Centralized Dynamic Channel Allocation
	Distributed Dynamic Channel Allocation

	Comparison of FCA and DCA
	Hybrid Channel Allocation
	Algorithms

	TECHNIQUES
	1.Inverse Multiplexing at the Hardware Layer
	2.Inverse Multiplexing at the Data Link Layer
	a.IMA
	b.Multilink PPP
	Multirate Service

	3.Adaptive Inverse Multiplexing for Wide-Area Wireless Networks
	4.Local Multipoint Distribution Services
	5.Time Division Multiplexed on Demand
	Optically Interconnected Multiprocessors
	CSMA/CD-Based Multiple Network Lines
	Hybrid Channel Allocation in Wireless Networks
	Beowulf Ethernet Channel Bonding

	SUMMARY

	DETERMINING A SOLUTION
	A.HOW DOES A STATION RECEIVE A CHANNEL
	B.QUEUEING
	C.PROPAGATION DELAY
	D.SIMULATION DESIGN
	E.CLASS DESIGN
	Channel Allocation
	Display Channel
	Display Delivery Time
	First Come First Serve
	Fair Distribution

	TESTING AND ANALYSIS OF RESULTS
	A.TRAFFIC GENERATION
	BFIRST COME FIRST SERVE
	1.Testing
	2.Results

	C.FAIR DISTRIBUTION
	1.Testing
	2.Results

	D.ANALYSIS
	E.POSSIBLE IMPLEMENTATIONS

	CONCLUSION
	A.RECOMMENDATION
	FUTURE WORK

	APPENDICES
	A.PROGRAM - JAVA CLASS: CHANNEL ALLOCATION
	B.PROGRAM – JAVA CLASS: DISPLAY CHANNEL
	C.PROGRAM – JAVA CLASS: DISPLAY DELIVERY TIME
	D.PROGRAM – JAVA CLASS: FIRST COME FIRST SERVE
	E.PROGRAM – JAVA CLASS: FAIR DISTRIBUTION

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

